We have a string S of lowercase letters, and an integer array shifts.
Call the shift of a letter, the next letter in the alphabet, (wrapping around so that 'z' becomes 'a').
For example, shift('a') = 'b', shift('t') = 'u', and shift('z') = 'a'.
Now for each shifts[i] = x, we want to shift the first i+1 letters of S, x times.
Return the final string after all such shifts to S are applied.
Example 1:
Input: S = "abc", shifts = [3,5,9]
Output: "rpl"
Explanation:
We start with "abc".
After shifting the first 1 letters of S by 3, we have "dbc".
After shifting the first 2 letters of S by 5, we have "igc".
After shifting the first 3 letters of S by 9, we have "rpl", the answer.
Note:
1 <= S.length = shifts.length <= 20000
0 <= shifts[i] <= 10 ^ 9
思路
第一版
遍历 shifts,索引为 i,然后遍历 i 次 S,shift 每个字符,如果结果大于 'z',将结果减去 26。
这一版太慢了。
第二版
第一个字符的 shift 的位数是 shifts 中所有数字的和,如果反响遍历 shifts,保存已经遍历的数字和,这个和就是当前位的 S 的字符需要 shift 的位数。
求和应该取 26 的余数(不然和超过 uint8 的范围导致相加失败)。
新的值等于 (旧值 + shift 的位数 - 'a') 取 26 的余数 + 'a'。通过相对于 'a' 的偏移减少是否超过 'z' 的判断。