record

package
v2.0.0 Latest Latest
Warning

This package is not in the latest version of its module.

Go to latest
Published: Dec 18, 2025 License: Apache-2.0 Imports: 10 Imported by: 0

Documentation

Overview

Package record contains monadic operations for maps as well as a rich set of utility functions

Index

Examples

Constants

This section is empty.

Variables

This section is empty.

Functions

func Ap

func Ap[A any, K comparable, B any](m Mo.Monoid[map[K]B]) func(fa map[K]A) func(map[K]func(A) B) map[K]B

func ApS

func ApS[S1, T any, K comparable, S2 any](m Mo.Monoid[map[K]S2]) func(setter func(T) func(S1) S2, fa map[K]T) func(map[K]S1) map[K]S2

ApS attaches a value to a context [S1] to produce a context [S2] by considering the context and the value concurrently (using Applicative rather than Monad). This allows independent computations to be combined without one depending on the result of the other.

Unlike Bind, which sequences operations, ApS can be used when operations are independent and can conceptually run in parallel.

Example:

type State struct {
    Name  string
    Count int
}

// These operations are independent and can be combined with ApS
names := map[string]string{"a": "Alice", "b": "Bob"}
counts := map[string]int{"a": 10, "b": 20}

result := F.Pipe2(
    record.Do[string, State](),
    record.ApS(monoid.Record[string, State]())(
        func(name string) func(State) State {
            return func(s State) State { s.Name = name; return s }
        },
        names,
    ),
    record.ApS(monoid.Record[string, State]())(
        func(count int) func(State) State {
            return func(s State) State { s.Count = count; return s }
        },
        counts,
    ),
) // map[string]State{"a": {Name: "Alice", Count: 10}, "b": {Name: "Bob", Count: 20}}

func Bind

func Bind[S1, T any, K comparable, S2 any](m Mo.Monoid[map[K]S2]) func(setter func(T) func(S1) S2, f func(S1) map[K]T) func(map[K]S1) map[K]S2

Bind attaches the result of a computation to a context [S1] to produce a context [S2]. This enables sequential composition where each step can depend on the results of previous steps. For records, this merges values by key.

The setter function takes the result of the computation and returns a function that updates the context from S1 to S2.

Example:

type State struct {
    Name  string
    Count int
}

result := F.Pipe2(
    record.Do[string, State](),
    record.Bind(monoid.Record[string, State]())(
        func(name string) func(State) State {
            return func(s State) State { s.Name = name; return s }
        },
        func(s State) map[string]string {
            return map[string]string{"a": "Alice", "b": "Bob"}
        },
    ),
    record.Bind(monoid.Record[string, State]())(
        func(count int) func(State) State {
            return func(s State) State { s.Count = count; return s }
        },
        func(s State) map[string]int {
            // This can access s.Name from the previous step
            return map[string]int{"a": len(s.Name), "b": len(s.Name) * 2}
        },
    ),
)

func BindTo

func BindTo[S1, T any, K comparable](setter func(T) S1) func(map[K]T) map[K]S1

BindTo initializes a new state [S1] from a value [T]

func Chain

func Chain[V1 any, K comparable, V2 any](m Mo.Monoid[map[K]V2]) func(func(V1) map[K]V2) func(map[K]V1) map[K]V2

func ChainWithIndex

func ChainWithIndex[V1 any, K comparable, V2 any](m Mo.Monoid[map[K]V2]) func(func(K, V1) map[K]V2) func(map[K]V1) map[K]V2

func Clone

func Clone[K comparable, V any](f EM.Endomorphism[V]) EM.Endomorphism[map[K]V]

Clone creates a deep copy of the map using the provided endomorphism to clone the values

func Collect

func Collect[K comparable, V, R any](f func(K, V) R) func(map[K]V) []R

Collect applies a collector function to the key value pairs in a map and returns the result as an array

func CollectOrd

func CollectOrd[V, R any, K comparable](o ord.Ord[K]) func(func(K, V) R) func(map[K]V) []R

CollectOrd applies a collector function to the key value pairs in a map and returns the result as an array

func ConstNil

func ConstNil[K comparable, V any]() map[K]V

ConstNil return a nil map

func Copy

func Copy[K comparable, V any](m map[K]V) map[K]V

Copy creates a shallow copy of the map

func DeleteAt

func DeleteAt[K comparable, V any](k K) func(map[K]V) map[K]V

func Do

func Do[K comparable, S any]() map[K]S

Do creates an empty context of type [S] to be used with the Bind operation. This is the starting point for do-notation style composition.

Example:

type State struct {
    Name  string
    Count int
}
result := record.Do[string, State]()

func Empty

func Empty[K comparable, V any]() map[K]V

Empty creates an empty map

func Eq

func Eq[K comparable, V any](e E.Eq[V]) E.Eq[map[K]V]

func Filter

func Filter[K comparable, V any](f func(K) bool) func(map[K]V) map[K]V

Filter creates a new map with only the elements that match the predicate

func FilterChain

func FilterChain[V1 any, K comparable, V2 any](m Mo.Monoid[map[K]V2]) func(func(V1) O.Option[map[K]V2]) func(map[K]V1) map[K]V2

FilterChain creates a new map with only the elements for which the transformation function creates a Some

func FilterChainWithIndex

func FilterChainWithIndex[V1 any, K comparable, V2 any](m Mo.Monoid[map[K]V2]) func(func(K, V1) O.Option[map[K]V2]) func(map[K]V1) map[K]V2

FilterChainWithIndex creates a new map with only the elements for which the transformation function creates a Some

func FilterMap

func FilterMap[K comparable, V1, V2 any](f func(V1) O.Option[V2]) func(map[K]V1) map[K]V2

FilterMap creates a new map with only the elements for which the transformation function creates a Some

func FilterMapWithIndex

func FilterMapWithIndex[K comparable, V1, V2 any](f func(K, V1) O.Option[V2]) func(map[K]V1) map[K]V2

FilterMapWithIndex creates a new map with only the elements for which the transformation function creates a Some

func FilterWithIndex

func FilterWithIndex[K comparable, V any](f func(K, V) bool) func(map[K]V) map[K]V

FilterWithIndex creates a new map with only the elements that match the predicate

func Flap

func Flap[B any, K comparable, A any](a A) func(map[K]func(A) B) map[K]B

func Flatten

func Flatten[K comparable, V any](m Mo.Monoid[map[K]V]) func(map[K]map[K]V) map[K]V

Flatten converts a nested map into a regular map

func Fold

func Fold[K comparable, A any](m Mo.Monoid[A]) func(map[K]A) A

Fold folds the record using the provided Monoid.

func FoldMap

func FoldMap[K comparable, A, B any](m Mo.Monoid[B]) func(func(A) B) func(map[K]A) B

FoldMap maps and folds a record. Map the record passing each value to the iterating function. Then fold the results using the provided Monoid.

Example
src := map[string]string{
	"a": "a",
	"b": "b",
	"c": "c",
}

fold := FoldMapOrd[string, string](S.Ord)(S.Monoid)(strings.ToUpper)

fmt.Println(fold(src))
Output:

ABC

func FoldMapOrd

func FoldMapOrd[A, B any, K comparable](o ord.Ord[K]) func(m Mo.Monoid[B]) func(func(A) B) func(map[K]A) B

FoldMap maps and folds a record. Map the record passing each value to the iterating function. Then fold the results using the provided Monoid and the items in the provided order

func FoldMapOrdWithIndex

func FoldMapOrdWithIndex[K comparable, A, B any](o ord.Ord[K]) func(m Mo.Monoid[B]) func(func(K, A) B) func(map[K]A) B

FoldMapWithIndex maps and folds a record. Map the record passing each value to the iterating function. Then fold the results using the provided Monoid and the items in the provided order

func FoldMapWithIndex

func FoldMapWithIndex[K comparable, A, B any](m Mo.Monoid[B]) func(func(K, A) B) func(map[K]A) B

FoldMapWithIndex maps and folds a record. Map the record passing each value to the iterating function. Then fold the results using the provided Monoid.

func FoldOrd

func FoldOrd[A any, K comparable](o ord.Ord[K]) func(m Mo.Monoid[A]) func(map[K]A) A

Fold folds the record using the provided Monoid with the items passed in the given order

func FromArray

func FromArray[
	K comparable,
	V any](m Mg.Magma[V]) func(fa []T.Tuple2[K, V]) map[K]V

FromArray converts from an array to a map Duplicate keys are resolved by the provided [Mg.Magma]

func FromArrayMap

func FromArrayMap[
	A any,
	K comparable,
	V any](m Mg.Magma[V]) func(f func(A) T.Tuple2[K, V]) func(fa []A) map[K]V

FromArrayMap converts from an array to a map Duplicate keys are resolved by the provided [Mg.Magma]

func FromEntries

func FromEntries[K comparable, V any](fa []T.Tuple2[K, V]) map[K]V

func FromFoldable

func FromFoldable[
	HKTA any,
	FOLDABLE ~func(func(map[K]V, T.Tuple2[K, V]) map[K]V, map[K]V) func(HKTA) map[K]V,
	K comparable,
	V any](m Mg.Magma[V], red FOLDABLE) func(fa HKTA) map[K]V

FromFoldable converts from a reducer to a map Duplicate keys are resolved by the provided [Mg.Magma]

func FromFoldableMap

func FromFoldableMap[
	FOLDABLE ~func(func(map[K]V, A) map[K]V, map[K]V) func(HKTA) map[K]V,
	A any,
	HKTA any,
	K comparable,
	V any](m Mg.Magma[V], red FOLDABLE) func(f func(A) T.Tuple2[K, V]) func(fa HKTA) map[K]V

FromFoldableMap converts from a reducer to a map Duplicate keys are resolved by the provided [Mg.Magma]

func FromStrictEquals

func FromStrictEquals[K, V comparable]() E.Eq[map[K]V]

FromStrictEquals constructs an [EQ.Eq] from the canonical comparison function

func Has

func Has[K comparable, V any](k K, r map[K]V) bool

Has tests if a key is contained in a map

func IsEmpty

func IsEmpty[K comparable, V any](r map[K]V) bool

IsEmpty tests if a map is empty

func IsNil

func IsNil[K comparable, V any](m map[K]V) bool

IsNil checks if the map is set to nil

func IsNonEmpty

func IsNonEmpty[K comparable, V any](r map[K]V) bool

IsNonEmpty tests if a map is not empty

func IsNonNil

func IsNonNil[K comparable, V any](m map[K]V) bool

IsNonNil checks if the map is set to nil

func Keys

func Keys[K comparable, V any](r map[K]V) []K

Keys returns the key in a map

func KeysOrd

func KeysOrd[V any, K comparable](o ord.Ord[K]) func(r map[K]V) []K

KeysOrd returns the keys in the map in their given order

func Let

func Let[S1, T any, K comparable, S2 any](
	setter func(T) func(S1) S2,
	f func(S1) T,
) func(map[K]S1) map[K]S2

Let attaches the result of a computation to a context [S1] to produce a context [S2]

func LetTo

func LetTo[S1, T any, K comparable, S2 any](
	setter func(T) func(S1) S2,
	b T,
) func(map[K]S1) map[K]S2

LetTo attaches the a value to a context [S1] to produce a context [S2]

func Lookup

func Lookup[V any, K comparable](k K) func(map[K]V) O.Option[V]

Lookup returns the entry for a key in a map if it exists

func Map

func Map[K comparable, V, R any](f func(V) R) func(map[K]V) map[K]R

func MapRef

func MapRef[K comparable, V, R any](f func(*V) R) func(map[K]V) map[K]R

func MapRefWithIndex

func MapRefWithIndex[K comparable, V, R any](f func(K, *V) R) func(map[K]V) map[K]R

func MapWithIndex

func MapWithIndex[K comparable, V, R any](f func(K, V) R) func(map[K]V) map[K]R

func Merge

func Merge[K comparable, V any](right map[K]V) func(map[K]V) map[K]V

Merge combines two maps giving the values in the right one precedence. Also refer to MergeMonoid

func MergeMonoid

func MergeMonoid[K comparable, V any]() M.Monoid[map[K]V]

MergeMonoid computes the union of two maps of the same type giving the last map precedence

func MonadAp

func MonadAp[A any, K comparable, B any](m Mo.Monoid[map[K]B], fab map[K]func(A) B, fa map[K]A) map[K]B

func MonadChain

func MonadChain[V1 any, K comparable, V2 any](m Mo.Monoid[map[K]V2], r map[K]V1, f func(V1) map[K]V2) map[K]V2

func MonadChainWithIndex

func MonadChainWithIndex[V1 any, K comparable, V2 any](m Mo.Monoid[map[K]V2], r map[K]V1, f func(K, V1) map[K]V2) map[K]V2

func MonadFlap

func MonadFlap[B any, K comparable, A any](fab map[K]func(A) B, a A) map[K]B

func MonadLookup

func MonadLookup[V any, K comparable](m map[K]V, k K) O.Option[V]

MonadLookup returns the entry for a key in a map if it exists

func MonadMap

func MonadMap[K comparable, V, R any](r map[K]V, f func(V) R) map[K]R

func MonadMapRef

func MonadMapRef[K comparable, V, R any](r map[K]V, f func(*V) R) map[K]R

func MonadMapRefWithIndex

func MonadMapRefWithIndex[K comparable, V, R any](r map[K]V, f func(K, *V) R) map[K]R

func MonadMapWithIndex

func MonadMapWithIndex[K comparable, V, R any](r map[K]V, f func(K, V) R) map[K]R

func Reduce

func Reduce[K comparable, V, R any](f func(R, V) R, initial R) func(map[K]V) R

func ReduceOrd

func ReduceOrd[V, R any, K comparable](o ord.Ord[K]) func(func(R, V) R, R) func(map[K]V) R

ReduceOrd reduces a map into a single value via a reducer function making sure that the keys are passed to the reducer in the specified order

func ReduceOrdWithIndex

func ReduceOrdWithIndex[V, R any, K comparable](o ord.Ord[K]) func(func(K, R, V) R, R) func(map[K]V) R

ReduceOrdWithIndex reduces a map into a single value via a reducer function making sure that the keys are passed to the reducer in the specified order

func ReduceRef

func ReduceRef[K comparable, V, R any](f func(R, *V) R, initial R) func(map[K]V) R

func ReduceRefWithIndex

func ReduceRefWithIndex[K comparable, V, R any](f func(K, R, *V) R, initial R) func(map[K]V) R

func ReduceWithIndex

func ReduceWithIndex[K comparable, V, R any](f func(K, R, V) R, initial R) func(map[K]V) R

func Sequence

func Sequence[K comparable, A, HKTA, HKTAA, HKTRA any](
	fof func(map[K]A) HKTRA,
	fmap func(func(map[K]A) func(A) map[K]A) func(HKTRA) HKTAA,
	fap func(HKTA) func(HKTAA) HKTRA,
	ma map[K]HKTA) HKTRA

HKTA = HKT[A] HKTAA = HKT[func(A)map[K]A] HKTRA = HKT[map[K]A]

func Singleton

func Singleton[K comparable, V any](k K, v V) map[K]V

Singleton creates a new map with a single entry

func Size

func Size[K comparable, V any](r map[K]V) int

Size returns the number of elements in a map

func ToArray

func ToArray[K comparable, V any](r map[K]V) []T.Tuple2[K, V]

func ToEntries

func ToEntries[K comparable, V any](r map[K]V) []T.Tuple2[K, V]

func Traverse

func Traverse[K comparable, A, B, HKTB, HKTAB, HKTRB any](
	fof func(map[K]B) HKTRB,
	fmap func(func(map[K]B) func(B) map[K]B) func(HKTRB) HKTAB,
	fap func(HKTB) func(HKTAB) HKTRB,
	f func(A) HKTB) func(map[K]A) HKTRB

HKTA = HKT<A> HKTB = HKT<B> HKTAB = HKT<func(A)B> HKTRB = HKT<map[K]B>

func TraverseWithIndex

func TraverseWithIndex[K comparable, A, B, HKTB, HKTAB, HKTRB any](
	fof func(map[K]B) HKTRB,
	fmap func(func(map[K]B) func(B) map[K]B) func(HKTRB) HKTAB,
	fap func(HKTB) func(HKTAB) HKTRB,

	f func(K, A) HKTB) func(map[K]A) HKTRB

func Union

func Union[K comparable, V any](m Mg.Magma[V]) func(map[K]V) func(map[K]V) map[K]V

func UnionFirstMonoid

func UnionFirstMonoid[K comparable, V any]() M.Monoid[map[K]V]

UnionFirstMonoid computes the union of two maps of the same type giving the first map precedence

func UnionFirstSemigroup

func UnionFirstSemigroup[K comparable, V any]() S.Semigroup[map[K]V]

func UnionLastMonoid

func UnionLastMonoid[K comparable, V any]() M.Monoid[map[K]V]

UnionLastMonoid computes the union of two maps of the same type giving the last map precedence

func UnionLastSemigroup

func UnionLastSemigroup[K comparable, V any]() S.Semigroup[map[K]V]

func UnionMonoid

func UnionMonoid[K comparable, V any](s S.Semigroup[V]) M.Monoid[map[K]V]

UnionMonoid computes the union of two maps of the same type

func UnionSemigroup

func UnionSemigroup[K comparable, V any](s S.Semigroup[V]) S.Semigroup[map[K]V]

func UpsertAt

func UpsertAt[K comparable, V any](k K, v V) func(map[K]V) map[K]V

func Values

func Values[K comparable, V any](r map[K]V) []V

Values returns the values in a map

func ValuesOrd

func ValuesOrd[V any, K comparable](o ord.Ord[K]) func(r map[K]V) []V

ValuesOrd returns the values in the map ordered by their keys in the given order

Example
src := map[string]string{
	"c": "a",
	"b": "b",
	"a": "c",
}

getValues := ValuesOrd[string](S.Ord)

fmt.Println(getValues(src))
Output:

[c b a]

Types

This section is empty.

Directories

Path Synopsis

Jump to

Keyboard shortcuts

? : This menu
/ : Search site
f or F : Jump to
y or Y : Canonical URL