Documentation
¶
Index ¶
- func CheckIfAllNegative(data []float64) bool
- func CheckIfAllSmallerOne(data []float64) bool
- func Delete[T any](data []T, idx int) []T
- func Discretization(data [][]float64, binSize int) ([][]float64, [][]float64)
- func FStatistic(feature []float64, class []int) float64
- func GetFeatures(features []string, indices []int) []string
- func MinMaxNormalization(data []float64) []float64
- func MutualInfo[T1, T2 Numeric](data1 []T1, data2 []T2) float64
- func PairwiseOperation(data1, data2 []float64, operation string) []float64
- func PearsonCorrelation(data1, data2 []float64) float64
- func QuantizationError(quantizedData, originalData []float64) float64
- func QuantizationLevel(data [][]float64, threshold float64) int
- func ReadCSV(filepath string, irrelevantCols, irrelevantRows []int, ...) ([][]float64, []string, []int)
- func RedundancyUpdate(data [][]float64, featureToConsider []int, target int, ...) map[[2]int]float64
- func Relevance(data [][]float64, class []int, relevanceFunc func([]float64, []int) float64) []float64
- type DatamRMR
- type Numeric
- type ParasmRMR
Constants ¶
This section is empty.
Variables ¶
This section is empty.
Functions ¶
func CheckIfAllNegative ¶
func CheckIfAllSmallerOne ¶
func FStatistic ¶
FStatistic returns the f-statistic of feature and class.
func GetFeatures ¶
func MinMaxNormalization ¶
func MutualInfo ¶
MutualInfo calculates the mutual information between two data slices.
func PairwiseOperation ¶
func PearsonCorrelation ¶
PearsonCorrelation returns the absolute value of pearson correlation coefficient
func QuantizationError ¶
get the quantization error
func QuantizationLevel ¶
get the quantization level
func ReadCSV ¶
func ReadCSV(filepath string, irrelevantCols, irrelevantRows []int, featureIndex, groupIndex int, colFeatures bool) ([][]float64, []string, []int)
ReadCSV reads a CSV file and returns data, feature strings and class lables.
func RedundancyUpdate ¶
func RedundancyUpdate(data [][]float64, featureToConsider []int, target int, redundancyMap map[[2]int]float64, redundancyFunc func([]float64, []float64) float64) map[[2]int]float64
RedundancyUpdate calculates the redundancy between each unselected feature with last selected feature and updates the redundancy map.
Types ¶
type ParasmRMR ¶
type ParasmRMR struct {
Data DatamRMR
Discretization bool
BinSize int
Method string
Calculation string
MaxFeatures int
RedundancyMethod string
Threshold float64
Verbose bool
QLevel int
RelevanceFunc func([]float64, []int) float64
RedundancyFunc func([]float64, []float64) float64
}
ParasmRMR holds parameters and functions needed to execute the mRMR algorithm.
Click to show internal directories.
Click to hide internal directories.

