decomposition

package
v1.0.0 Latest Latest
Warning

This package is not in the latest version of its module.

Go to latest
Published: Nov 4, 2025 License: MIT Imports: 4 Imported by: 0

Documentation

Overview

Package decomposition provides dimensionality reduction algorithms.

Index

Constants

This section is empty.

Variables

This section is empty.

Functions

This section is empty.

Types

type PCA

type PCA struct {
	// NComponents is the number of principal components to keep
	NComponents int
	// contains filtered or unexported fields
}

PCA implements Principal Component Analysis for dimensionality reduction. PCA finds orthogonal directions of maximum variance in the data.

func NewPCA

func NewPCA(nComponents int) *PCA

NewPCA creates a new PCA model.

func (*PCA) Components

func (pca *PCA) Components() [][]float64

Components returns the principal components (eigenvectors).

func (*PCA) ExplainedVariance

func (pca *PCA) ExplainedVariance() []float64

ExplainedVariance returns the variance explained by each component.

func (*PCA) ExplainedVarianceRatio

func (pca *PCA) ExplainedVarianceRatio() []float64

ExplainedVarianceRatio returns the proportion of variance explained by each component.

func (*PCA) Fit

func (pca *PCA) Fit(X *dataframe.DataFrame) error

Fit learns the principal components from data X.

func (*PCA) FitTransform

func (pca *PCA) FitTransform(X *dataframe.DataFrame) (*dataframe.DataFrame, error)

FitTransform fits the model and transforms the data in one step.

func (*PCA) Transform

func (pca *PCA) Transform(X *dataframe.DataFrame) (*dataframe.DataFrame, error)

Transform projects data onto the principal components.

Jump to

Keyboard shortcuts

? : This menu
/ : Search site
f or F : Jump to
y or Y : Canonical URL