tree

package
v1.0.0 Latest Latest
Warning

This package is not in the latest version of its module.

Go to latest
Published: Nov 4, 2025 License: MIT Imports: 6 Imported by: 0

Documentation

Overview

Package tree provides decision tree algorithms.

Index

Constants

This section is empty.

Variables

This section is empty.

Functions

This section is empty.

Types

type DecisionTree

type DecisionTree struct {
	// MaxDepth is the maximum depth of the tree (0 = unlimited)
	MaxDepth int

	// MinSamples is the minimum samples required to split a node
	MinSamples int

	// Criterion for splitting: "gini", "entropy" (classification), "mse" (regression)
	Criterion string
	// contains filtered or unexported fields
}

DecisionTree implements a decision tree for classification and regression.

func NewDecisionTreeClassifier

func NewDecisionTreeClassifier(maxDepth, minSamples int, criterion string) *DecisionTree

NewDecisionTreeClassifier creates a new decision tree for classification.

func NewDecisionTreeRegressor

func NewDecisionTreeRegressor(maxDepth, minSamples int) *DecisionTree

NewDecisionTreeRegressor creates a new decision tree for regression.

func (*DecisionTree) FeatureImportances

func (dt *DecisionTree) FeatureImportances() []float64

FeatureImportances returns the importance of each feature.

func (*DecisionTree) Fit

Fit trains the decision tree.

func (*DecisionTree) Predict

func (dt *DecisionTree) Predict(X *dataframe.DataFrame) (*seriesPkg.Series[any], error)

Predict makes predictions on new data.

Jump to

Keyboard shortcuts

? : This menu
/ : Search site
f or F : Jump to
y or Y : Canonical URL