hypothesis

package
v1.0.0 Latest Latest
Warning

This package is not in the latest version of its module.

Go to latest
Published: Nov 4, 2025 License: MIT Imports: 3 Imported by: 0

Documentation

Overview

Package hypothesis provides statistical hypothesis tests.

Index

Constants

This section is empty.

Variables

This section is empty.

Functions

This section is empty.

Types

type ANOVAResult

type ANOVAResult struct {
	FStatistic float64 // F-statistic
	PValue     float64 // p-value
	DFBetween  int     // degrees of freedom between groups
	DFWithin   int     // degrees of freedom within groups
}

ANOVAResult contains the results of an ANOVA test.

func OneWayANOVA

func OneWayANOVA(groups ...[]float64) ANOVAResult

OneWayANOVA performs a one-way ANOVA test. Tests whether the means of multiple groups differ.

type ChiSquareResult

type ChiSquareResult struct {
	Statistic float64 // chi-square statistic
	PValue    float64 // p-value
	DF        int     // degrees of freedom
}

ChiSquareResult contains the results of a chi-square test.

func ChiSquare

func ChiSquare(observed, expected [][]float64) ChiSquareResult

ChiSquare performs a chi-square test for independence. observed and expected are contingency tables (2D slices).

func ChiSquareGOF

func ChiSquareGOF(observed, expected []float64) ChiSquareResult

ChiSquareGOF performs a chi-square goodness-of-fit test. Tests whether the observed frequencies match the expected frequencies.

func ChiSquareIndependence

func ChiSquareIndependence(observed [][]float64) (ChiSquareResult, error)

ChiSquareIndependence performs a chi-square test of independence from a contingency table. Calculates expected frequencies automatically from observed data.

type TTestResult

type TTestResult struct {
	Statistic float64 // t-statistic
	PValue    float64 // p-value
	DF        int     // degrees of freedom
}

TTestResult contains the results of a t-test.

func TTest

func TTest(sample []float64, mu float64) TTestResult

TTest performs a one-sample t-test. Tests whether the sample mean differs from the population mean mu.

func TTest2Sample

func TTest2Sample(sample1, sample2 []float64, equalVar bool) TTestResult

TTest2Sample performs a two-sample t-test (independent samples). Tests whether the means of two samples differ. equalVar: if true, assumes equal variances (pooled test)

func TTestPaired

func TTestPaired(sample1, sample2 []float64) TTestResult

TTestPaired performs a paired t-test. Tests whether the mean difference between paired samples is zero.

Jump to

Keyboard shortcuts

? : This menu
/ : Search site
f or F : Jump to
y or Y : Canonical URL