 Documentation
      ¶
      Documentation
      ¶
    
    
  
    
  
    Overview ¶
Package machinelearningiface provides an interface to enable mocking the Amazon Machine Learning service client for testing your code.
It is important to note that this interface will have breaking changes when the service model is updated and adds new API operations, paginators, and waiters.
Index ¶
Constants ¶
This section is empty.
Variables ¶
This section is empty.
Functions ¶
This section is empty.
Types ¶
type MachineLearningAPI ¶
type MachineLearningAPI interface {
	AddTagsRequest(*machinelearning.AddTagsInput) machinelearning.AddTagsRequest
	CreateBatchPredictionRequest(*machinelearning.CreateBatchPredictionInput) machinelearning.CreateBatchPredictionRequest
	CreateDataSourceFromRDSRequest(*machinelearning.CreateDataSourceFromRDSInput) machinelearning.CreateDataSourceFromRDSRequest
	CreateDataSourceFromRedshiftRequest(*machinelearning.CreateDataSourceFromRedshiftInput) machinelearning.CreateDataSourceFromRedshiftRequest
	CreateDataSourceFromS3Request(*machinelearning.CreateDataSourceFromS3Input) machinelearning.CreateDataSourceFromS3Request
	CreateEvaluationRequest(*machinelearning.CreateEvaluationInput) machinelearning.CreateEvaluationRequest
	CreateMLModelRequest(*machinelearning.CreateMLModelInput) machinelearning.CreateMLModelRequest
	CreateRealtimeEndpointRequest(*machinelearning.CreateRealtimeEndpointInput) machinelearning.CreateRealtimeEndpointRequest
	DeleteBatchPredictionRequest(*machinelearning.DeleteBatchPredictionInput) machinelearning.DeleteBatchPredictionRequest
	DeleteDataSourceRequest(*machinelearning.DeleteDataSourceInput) machinelearning.DeleteDataSourceRequest
	DeleteEvaluationRequest(*machinelearning.DeleteEvaluationInput) machinelearning.DeleteEvaluationRequest
	DeleteMLModelRequest(*machinelearning.DeleteMLModelInput) machinelearning.DeleteMLModelRequest
	DeleteRealtimeEndpointRequest(*machinelearning.DeleteRealtimeEndpointInput) machinelearning.DeleteRealtimeEndpointRequest
	DeleteTagsRequest(*machinelearning.DeleteTagsInput) machinelearning.DeleteTagsRequest
	DescribeBatchPredictionsRequest(*machinelearning.DescribeBatchPredictionsInput) machinelearning.DescribeBatchPredictionsRequest
	DescribeDataSourcesRequest(*machinelearning.DescribeDataSourcesInput) machinelearning.DescribeDataSourcesRequest
	DescribeEvaluationsRequest(*machinelearning.DescribeEvaluationsInput) machinelearning.DescribeEvaluationsRequest
	DescribeMLModelsRequest(*machinelearning.DescribeMLModelsInput) machinelearning.DescribeMLModelsRequest
	DescribeTagsRequest(*machinelearning.DescribeTagsInput) machinelearning.DescribeTagsRequest
	GetBatchPredictionRequest(*machinelearning.GetBatchPredictionInput) machinelearning.GetBatchPredictionRequest
	GetDataSourceRequest(*machinelearning.GetDataSourceInput) machinelearning.GetDataSourceRequest
	GetEvaluationRequest(*machinelearning.GetEvaluationInput) machinelearning.GetEvaluationRequest
	GetMLModelRequest(*machinelearning.GetMLModelInput) machinelearning.GetMLModelRequest
	PredictRequest(*machinelearning.PredictInput) machinelearning.PredictRequest
	UpdateBatchPredictionRequest(*machinelearning.UpdateBatchPredictionInput) machinelearning.UpdateBatchPredictionRequest
	UpdateDataSourceRequest(*machinelearning.UpdateDataSourceInput) machinelearning.UpdateDataSourceRequest
	UpdateEvaluationRequest(*machinelearning.UpdateEvaluationInput) machinelearning.UpdateEvaluationRequest
	UpdateMLModelRequest(*machinelearning.UpdateMLModelInput) machinelearning.UpdateMLModelRequest
	WaitUntilBatchPredictionAvailable(*machinelearning.DescribeBatchPredictionsInput) error
	WaitUntilBatchPredictionAvailableWithContext(aws.Context, *machinelearning.DescribeBatchPredictionsInput, ...aws.WaiterOption) error
	WaitUntilDataSourceAvailable(*machinelearning.DescribeDataSourcesInput) error
	WaitUntilDataSourceAvailableWithContext(aws.Context, *machinelearning.DescribeDataSourcesInput, ...aws.WaiterOption) error
	WaitUntilEvaluationAvailable(*machinelearning.DescribeEvaluationsInput) error
	WaitUntilEvaluationAvailableWithContext(aws.Context, *machinelearning.DescribeEvaluationsInput, ...aws.WaiterOption) error
	WaitUntilMLModelAvailable(*machinelearning.DescribeMLModelsInput) error
	WaitUntilMLModelAvailableWithContext(aws.Context, *machinelearning.DescribeMLModelsInput, ...aws.WaiterOption) error
}
    MachineLearningAPI provides an interface to enable mocking the machinelearning.MachineLearning service client's API operation, paginators, and waiters. This make unit testing your code that calls out to the SDK's service client's calls easier.
The best way to use this interface is so the SDK's service client's calls can be stubbed out for unit testing your code with the SDK without needing to inject custom request handlers into the SDK's request pipeline.
// myFunc uses an SDK service client to make a request to
// Amazon Machine Learning.
func myFunc(svc machinelearningiface.MachineLearningAPI) bool {
    // Make svc.AddTags request
}
func main() {
    cfg, err := external.LoadDefaultAWSConfig()
    if err != nil {
        panic("failed to load config, " + err.Error())
    }
    svc := machinelearning.New(cfg)
    myFunc(svc)
}
In your _test.go file:
// Define a mock struct to be used in your unit tests of myFunc.
type mockMachineLearningClient struct {
    machinelearningiface.MachineLearningAPI
}
func (m *mockMachineLearningClient) AddTags(input *machinelearning.AddTagsInput) (*machinelearning.AddTagsOutput, error) {
    // mock response/functionality
}
func TestMyFunc(t *testing.T) {
    // Setup Test
    mockSvc := &mockMachineLearningClient{}
    myfunc(mockSvc)
    // Verify myFunc's functionality
}
It is important to note that this interface will have breaking changes when the service model is updated and adds new API operations, paginators, and waiters. Its suggested to use the pattern above for testing, or using tooling to generate mocks to satisfy the interfaces.