Documentation
¶
Index ¶
- type ClassifierOption
- func WithClassifierAlpha(alpha float64) ClassifierOption
- func WithClassifierEta0(eta0 float64) ClassifierOption
- func WithClassifierLearningRate(lr string) ClassifierOption
- func WithClassifierLoss(loss string) ClassifierOption
- func WithClassifierMaxIter(maxIter int) ClassifierOption
- func WithClassifierPenalty(penalty string) ClassifierOption
- func WithClassifierRandomState(seed int64) ClassifierOption
- type Option
- func WithAlpha(alpha float64) Option
- func WithEta0(eta0 float64) Option
- func WithFitIntercept(fit bool) Option
- func WithLearningRate(lr string) Option
- func WithLoss(loss string) Option
- func WithMaxIter(maxIter int) Option
- func WithPenalty(penalty string) Option
- func WithRandomState(seed int64) Option
- func WithTol(tol float64) Option
- func WithWarmStart(warmStart bool) Option
- type PassiveAggressiveClassifier
- func (pa *PassiveAggressiveClassifier) Fit(X, y mat.Matrix) error
- func (pa *PassiveAggressiveClassifier) FitStream(ctx context.Context, dataChan <-chan *model.Batch) error
- func (pa *PassiveAggressiveClassifier) IsWarmStart() bool
- func (pa *PassiveAggressiveClassifier) NIterations() int
- func (pa *PassiveAggressiveClassifier) PartialFit(X, y mat.Matrix, classes []int) error
- func (pa *PassiveAggressiveClassifier) Predict(X mat.Matrix) (mat.Matrix, error)
- func (pa *PassiveAggressiveClassifier) SetWarmStart(warmStart bool)
- type PassiveAggressiveOption
- type PassiveAggressiveRegressor
- func (pa *PassiveAggressiveRegressor) Fit(X, y mat.Matrix) error
- func (pa *PassiveAggressiveRegressor) FitStream(ctx context.Context, dataChan <-chan *model.Batch) error
- func (pa *PassiveAggressiveRegressor) IsWarmStart() bool
- func (pa *PassiveAggressiveRegressor) NIterations() int
- func (pa *PassiveAggressiveRegressor) PartialFit(X, y mat.Matrix, classes []int) error
- func (pa *PassiveAggressiveRegressor) Predict(X mat.Matrix) (mat.Matrix, error)
- func (pa *PassiveAggressiveRegressor) SetWarmStart(warmStart bool)
- type SGDClassifier
- func (sgd *SGDClassifier) Classes() []int
- func (sgd *SGDClassifier) Coef() [][]float64
- func (sgd *SGDClassifier) DecisionFunction(X mat.Matrix) (mat.Matrix, error)
- func (sgd *SGDClassifier) Fit(X, y mat.Matrix) error
- func (sgd *SGDClassifier) FitPredictStream(ctx context.Context, dataChan <-chan *model.Batch) <-chan mat.Matrix
- func (sgd *SGDClassifier) FitStream(ctx context.Context, dataChan <-chan *model.Batch) error
- func (sgd *SGDClassifier) GetConverged() bool
- func (sgd *SGDClassifier) GetLearningRate() float64
- func (sgd *SGDClassifier) GetLearningRateSchedule() string
- func (sgd *SGDClassifier) GetLoss() float64
- func (sgd *SGDClassifier) GetLossHistory() []float64
- func (sgd *SGDClassifier) Intercept() []float64
- func (sgd *SGDClassifier) IsWarmStart() bool
- func (sgd *SGDClassifier) NIterations() int
- func (sgd *SGDClassifier) PartialFit(X, y mat.Matrix, classes []int) error
- func (sgd *SGDClassifier) Predict(X mat.Matrix) (mat.Matrix, error)
- func (sgd *SGDClassifier) PredictProba(X mat.Matrix) (mat.Matrix, error)
- func (sgd *SGDClassifier) PredictStream(ctx context.Context, inputChan <-chan mat.Matrix) <-chan mat.Matrix
- func (sgd *SGDClassifier) Score(X, y mat.Matrix) (float64, error)
- func (sgd *SGDClassifier) SetLearningRate(lr float64)
- func (sgd *SGDClassifier) SetLearningRateSchedule(schedule string)
- func (sgd *SGDClassifier) SetWarmStart(warmStart bool)
- type SGDRegressor
- func (sgd *SGDRegressor) Coef() []float64
- func (sgd *SGDRegressor) Fit(X, y mat.Matrix) error
- func (sgd *SGDRegressor) FitPredictStream(ctx context.Context, dataChan <-chan *model.Batch) <-chan mat.Matrix
- func (sgd *SGDRegressor) FitStream(ctx context.Context, dataChan <-chan *model.Batch) error
- func (sgd *SGDRegressor) GetConverged() bool
- func (sgd *SGDRegressor) GetLearningRate() float64
- func (sgd *SGDRegressor) GetLearningRateSchedule() string
- func (sgd *SGDRegressor) GetLoss() float64
- func (sgd *SGDRegressor) GetLossHistory() []float64
- func (sgd *SGDRegressor) Intercept() float64
- func (sgd *SGDRegressor) IsWarmStart() bool
- func (sgd *SGDRegressor) NIterations() int
- func (sgd *SGDRegressor) PartialFit(X, y mat.Matrix, classes []int) error
- func (sgd *SGDRegressor) Predict(X mat.Matrix) (mat.Matrix, error)
- func (sgd *SGDRegressor) PredictStream(ctx context.Context, inputChan <-chan mat.Matrix) <-chan mat.Matrix
- func (sgd *SGDRegressor) Score(X, y mat.Matrix) (float64, error)
- func (sgd *SGDRegressor) SetLearningRate(lr float64)
- func (sgd *SGDRegressor) SetLearningRateSchedule(schedule string)
- func (sgd *SGDRegressor) SetWarmStart(warmStart bool)
Constants ¶
This section is empty.
Variables ¶
This section is empty.
Functions ¶
This section is empty.
Types ¶
type ClassifierOption ¶
type ClassifierOption func(*SGDClassifier)
ClassifierOption はSGDClassifierの設定オプション
func WithClassifierAlpha ¶
func WithClassifierAlpha(alpha float64) ClassifierOption
WithClassifierAlpha は正則化の強度を設定
func WithClassifierEta0 ¶
func WithClassifierEta0(eta0 float64) ClassifierOption
WithClassifierEta0 は初期学習率を設定
func WithClassifierLearningRate ¶
func WithClassifierLearningRate(lr string) ClassifierOption
WithClassifierLearningRate は学習率スケジュールを設定
func WithClassifierLoss ¶
func WithClassifierLoss(loss string) ClassifierOption
WithClassifierLoss は損失関数を設定
func WithClassifierMaxIter ¶
func WithClassifierMaxIter(maxIter int) ClassifierOption
WithClassifierMaxIter は最大イテレーション数を設定
func WithClassifierPenalty ¶
func WithClassifierPenalty(penalty string) ClassifierOption
WithClassifierPenalty は正則化を設定
func WithClassifierRandomState ¶
func WithClassifierRandomState(seed int64) ClassifierOption
WithClassifierRandomState は乱数シードを設定
type PassiveAggressiveClassifier ¶
type PassiveAggressiveClassifier struct {
model.BaseEstimator
// ハイパーパラメータ
C float64 // 正則化パラメータ
// contains filtered or unexported fields
}
PassiveAggressiveClassifier は受動的攻撃的分類モデル
func NewPassiveAggressiveClassifier ¶
func NewPassiveAggressiveClassifier(options ...PassiveAggressiveOption) *PassiveAggressiveClassifier
NewPassiveAggressiveClassifier は新しいPassiveAggressiveClassifierを作成
func (*PassiveAggressiveClassifier) Fit ¶
func (pa *PassiveAggressiveClassifier) Fit(X, y mat.Matrix) error
Fit はバッチ学習でモデルを訓練
func (*PassiveAggressiveClassifier) IsWarmStart ¶
func (pa *PassiveAggressiveClassifier) IsWarmStart() bool
func (*PassiveAggressiveClassifier) NIterations ¶
func (pa *PassiveAggressiveClassifier) NIterations() int
func (*PassiveAggressiveClassifier) PartialFit ¶
func (pa *PassiveAggressiveClassifier) PartialFit(X, y mat.Matrix, classes []int) error
PartialFit はミニバッチでモデルを逐次的に学習
func (*PassiveAggressiveClassifier) SetWarmStart ¶
func (pa *PassiveAggressiveClassifier) SetWarmStart(warmStart bool)
type PassiveAggressiveOption ¶
type PassiveAggressiveOption func(interface{})
PassiveAggressiveOption は設定オプション
func WithPAFitIntercept ¶
func WithPAFitIntercept(fit bool) PassiveAggressiveOption
WithPAFitIntercept は切片学習の有無を設定
func WithPAMaxIter ¶
func WithPAMaxIter(maxIter int) PassiveAggressiveOption
WithPAMaxIter は最大イテレーション数を設定
type PassiveAggressiveRegressor ¶
type PassiveAggressiveRegressor struct {
model.BaseEstimator
// ハイパーパラメータ
C float64 // 正則化パラメータ
// contains filtered or unexported fields
}
PassiveAggressiveRegressor は受動的攻撃的回帰モデル scikit-learnのPassiveAggressiveRegressorと互換性を持つ
func NewPassiveAggressiveRegressor ¶
func NewPassiveAggressiveRegressor(options ...PassiveAggressiveOption) *PassiveAggressiveRegressor
NewPassiveAggressiveRegressor は新しいPassiveAggressiveRegressorを作成
func (*PassiveAggressiveRegressor) Fit ¶
func (pa *PassiveAggressiveRegressor) Fit(X, y mat.Matrix) error
Fit はバッチ学習でモデルを訓練
func (*PassiveAggressiveRegressor) FitStream ¶
func (pa *PassiveAggressiveRegressor) FitStream(ctx context.Context, dataChan <-chan *model.Batch) error
FitStream はデータストリームからモデルを学習
func (*PassiveAggressiveRegressor) IsWarmStart ¶
func (pa *PassiveAggressiveRegressor) IsWarmStart() bool
IsWarmStart はウォームスタートが有効かどうかを返す
func (*PassiveAggressiveRegressor) NIterations ¶
func (pa *PassiveAggressiveRegressor) NIterations() int
NIterations は実行された学習イテレーション数を返す
func (*PassiveAggressiveRegressor) PartialFit ¶
func (pa *PassiveAggressiveRegressor) PartialFit(X, y mat.Matrix, classes []int) error
PartialFit はミニバッチでモデルを逐次的に学習
func (*PassiveAggressiveRegressor) SetWarmStart ¶
func (pa *PassiveAggressiveRegressor) SetWarmStart(warmStart bool)
SetWarmStart はウォームスタートの有効/無効を設定
type SGDClassifier ¶
type SGDClassifier struct {
model.BaseEstimator
// contains filtered or unexported fields
}
SGDClassifier は確率的勾配降下法による分類モデル scikit-learnのSGDClassifierと互換性を持つ
func NewSGDClassifier ¶
func NewSGDClassifier(options ...ClassifierOption) *SGDClassifier
NewSGDClassifier は新しいSGDClassifierを作成
func (*SGDClassifier) DecisionFunction ¶
DecisionFunction は決定関数の値を返す
func (*SGDClassifier) FitPredictStream ¶
func (sgd *SGDClassifier) FitPredictStream(ctx context.Context, dataChan <-chan *model.Batch) <-chan mat.Matrix
FitPredictStream は学習と予測を同時に行う(test-then-train方式)
func (*SGDClassifier) GetConverged ¶
func (sgd *SGDClassifier) GetConverged() bool
GetConverged は収束したかどうかを返す
func (*SGDClassifier) GetLearningRate ¶
func (sgd *SGDClassifier) GetLearningRate() float64
GetLearningRate は現在の学習率を返す
func (*SGDClassifier) GetLearningRateSchedule ¶
func (sgd *SGDClassifier) GetLearningRateSchedule() string
GetLearningRateSchedule は学習率スケジュールを返す
func (*SGDClassifier) GetLossHistory ¶
func (sgd *SGDClassifier) GetLossHistory() []float64
GetLossHistory は損失値の履歴を返す
func (*SGDClassifier) Intercept ¶
func (sgd *SGDClassifier) Intercept() []float64
Intercept は学習された切片を返す
func (*SGDClassifier) IsWarmStart ¶
func (sgd *SGDClassifier) IsWarmStart() bool
IsWarmStart はウォームスタートが有効かどうかを返す
func (*SGDClassifier) NIterations ¶
func (sgd *SGDClassifier) NIterations() int
NIterations は実行された学習イテレーション数を返す
func (*SGDClassifier) PartialFit ¶
func (sgd *SGDClassifier) PartialFit(X, y mat.Matrix, classes []int) error
PartialFit はミニバッチでモデルを逐次的に学習(オンライン学習)
func (*SGDClassifier) PredictProba ¶
PredictProba は各クラスの予測確率を返す
func (*SGDClassifier) PredictStream ¶
func (sgd *SGDClassifier) PredictStream(ctx context.Context, inputChan <-chan mat.Matrix) <-chan mat.Matrix
PredictStream は入力ストリームに対してリアルタイム予測
func (*SGDClassifier) Score ¶
func (sgd *SGDClassifier) Score(X, y mat.Matrix) (float64, error)
Score はモデルの精度を計算
func (*SGDClassifier) SetLearningRate ¶
func (sgd *SGDClassifier) SetLearningRate(lr float64)
SetLearningRate は学習率を設定
func (*SGDClassifier) SetLearningRateSchedule ¶
func (sgd *SGDClassifier) SetLearningRateSchedule(schedule string)
SetLearningRateSchedule は学習率スケジュールを設定
func (*SGDClassifier) SetWarmStart ¶
func (sgd *SGDClassifier) SetWarmStart(warmStart bool)
SetWarmStart はウォームスタートの有効/無効を設定
type SGDRegressor ¶
type SGDRegressor struct {
model.BaseEstimator
// contains filtered or unexported fields
}
SGDRegressor は確率的勾配降下法による線形回帰モデル scikit-learnのSGDRegressorと互換性を持つ
func NewSGDRegressor ¶
func NewSGDRegressor(options ...Option) *SGDRegressor
NewSGDRegressor は新しいSGDRegressorを作成
func (*SGDRegressor) FitPredictStream ¶
func (sgd *SGDRegressor) FitPredictStream(ctx context.Context, dataChan <-chan *model.Batch) <-chan mat.Matrix
FitPredictStream は学習と予測を同時に行う(test-then-train方式)
func (*SGDRegressor) GetConverged ¶
func (sgd *SGDRegressor) GetConverged() bool
GetConverged は収束したかどうかを返す
func (*SGDRegressor) GetLearningRate ¶
func (sgd *SGDRegressor) GetLearningRate() float64
GetLearningRate は現在の学習率を返す
func (*SGDRegressor) GetLearningRateSchedule ¶
func (sgd *SGDRegressor) GetLearningRateSchedule() string
GetLearningRateSchedule は学習率スケジュールを返す
func (*SGDRegressor) GetLossHistory ¶
func (sgd *SGDRegressor) GetLossHistory() []float64
GetLossHistory は損失値の履歴を返す
func (*SGDRegressor) IsWarmStart ¶
func (sgd *SGDRegressor) IsWarmStart() bool
IsWarmStart はウォームスタートが有効かどうかを返す
func (*SGDRegressor) NIterations ¶
func (sgd *SGDRegressor) NIterations() int
NIterations は実行された学習イテレーション数を返す
func (*SGDRegressor) PartialFit ¶
func (sgd *SGDRegressor) PartialFit(X, y mat.Matrix, classes []int) error
PartialFit はミニバッチでモデルを逐次的に学習(オンライン学習)
func (*SGDRegressor) PredictStream ¶
func (sgd *SGDRegressor) PredictStream(ctx context.Context, inputChan <-chan mat.Matrix) <-chan mat.Matrix
PredictStream は入力ストリームに対してリアルタイム予測
func (*SGDRegressor) Score ¶
func (sgd *SGDRegressor) Score(X, y mat.Matrix) (float64, error)
Score はモデルの決定係数(R²)を計算
func (*SGDRegressor) SetLearningRate ¶
func (sgd *SGDRegressor) SetLearningRate(lr float64)
SetLearningRate は学習率を設定
func (*SGDRegressor) SetLearningRateSchedule ¶
func (sgd *SGDRegressor) SetLearningRateSchedule(schedule string)
SetLearningRateSchedule は学習率スケジュールを設定
func (*SGDRegressor) SetWarmStart ¶
func (sgd *SGDRegressor) SetWarmStart(warmStart bool)
SetWarmStart はウォームスタートの有効/無効を設定