_1605_find_valid_matrix_given_row_and_column_sums

package
v0.0.0-...-2b489ef Latest Latest
Warning

This package is not in the latest version of its module.

Go to latest
Published: Feb 25, 2025 License: MIT Imports: 0 Imported by: 0

README

You are given two arrays rowSum and colSum of non-negative integers where rowSum[i] is the sum of the elements in the ith row and colSum[j] is the sum of the elements of the jth column of a 2D matrix. In other words, you do not know the elements of the matrix, but you do know the sums of each row and column.

Find any matrix of non-negative integers of size rowSum.length x colSum.length that satisfies the rowSum and colSum requirements.

Return a 2D array representing any matrix that fulfills the requirements. It's guaranteed that at least one matrix that fulfills the requirements exists.

Example 1:

Input: rowSum = [3,8], colSum = [4,7]
Output: [[3,0],
         [1,7]]
Explanation:
0th row: 3 + 0 = 3 == rowSum[0]
1st row: 1 + 7 = 8 == rowSum[1]
0th column: 3 + 1 = 4 == colSum[0]
1st column: 0 + 7 = 7 == colSum[1]
The row and column sums match, and all matrix elements are non-negative.
Another possible matrix is: [[1,2],
                             [3,5]]

Example 2:

Input: rowSum = [5,7,10], colSum = [8,6,8]
Output: [[0,5,0],
         [6,1,0],
         [2,0,8]]

Example 3:

Input: rowSum = [14,9], colSum = [6,9,8]
Output: [[0,9,5],
         [6,0,3]]

Example 4:

Input: rowSum = [1,0], colSum = [1]
Output: [[1],
         [0]]

Example 5:

Input: rowSum = [0], colSum = [0]
Output: [[0]]

Constraints:

  • 1 <= rowSum.length, colSum.length <= 500
  • 0 <= rowSum[i], colSum[i] <= 108
  • sum(rows) == sum(columns)

Documentation

The Go Gopher

There is no documentation for this package.

Jump to

Keyboard shortcuts

? : This menu
/ : Search site
f or F : Jump to
y or Y : Canonical URL