options

package
v0.1.0 Latest Latest
Warning

This package is not in the latest version of its module.

Go to latest
Published: May 17, 2022 License: MIT Imports: 0 Imported by: 1

Documentation

Overview

Package options defines training options for specific regression variants.

Index

Constants

This section is empty.

Variables

This section is empty.

Functions

This section is empty.

Types

type ConverganceType

type ConverganceType int

ConverganceType identifies a convergance type.

const (
	Iterative ConverganceType = iota + 1
	Automatic
)

type GradientDescentVariant

type GradientDescentVariant int

GradientDescentVariant identifies a gradient descent variant.

const (
	Batch GradientDescentVariant = iota + 1
	Stochastic
)

type Options

type Options struct {
	// contains filtered or unexported fields
}

Options contains training options for a iterative regression algorithm.

func WithAutomaticConvergance

func WithAutomaticConvergance(lr float64, gdv GradientDescentVariant, t float64) Options

WithAutomaticConvergance returns new Options with an automatic convergance indicator.

func WithIterativeConvergance

func WithIterativeConvergance(lr float64, gdv GradientDescentVariant, i uint) Options

WithIterativeConvergance returns new Options with an iterative convergance indicator.

func (Options) ConverganceIndicator

func (opt Options) ConverganceIndicator() float64

ConverganceIndicator returns a convergance indicator.

func (Options) ConverganceType

func (opt Options) ConverganceType() ConverganceType

ConverganceType returns a convergance type.

func (Options) GradientDescentVariant

func (opt Options) GradientDescentVariant() GradientDescentVariant

GradientDescentVariant returns a gradient descent variant.

func (Options) LearningRate

func (opt Options) LearningRate() float64

LearningRate returns a learning rate.

Jump to

Keyboard shortcuts

? : This menu
/ : Search site
f or F : Jump to
y or Y : Canonical URL