_2920

package
v0.0.0-...-5ea41ec Latest Latest
Warning

This package is not in the latest version of its module.

Go to latest
Published: Jun 12, 2025 License: MIT Imports: 1 Imported by: 0

README

收集所有金币可获得的最大积分

有一棵由 n 个节点组成的无向树,以 0  为根节点,节点编号从 0n - 1 。给你一个长度为 n - 1 的二维 整数 数组 edges ,其中 edges[i] = [ai, bi] 表示在树上的节点 aibi 之间存在一条边。另给你一个下标从 0 开始、长度为 n 的数组 coins 和一个整数 k ,其中 coins[i] 表示节点 i 处的金币数量。

从根节点开始,你必须收集所有金币。要想收集节点上的金币,必须先收集该节点的祖先节点上的金币。

节点 i 上的金币可以用下述方法之一进行收集:

  • 收集所有金币,得到共计 coins[i] - k 点积分。如果 coins[i] - k 是负数,你将会失去 abs(coins[i] - k) 点积分。
  • 收集所有金币,得到共计 floor(coins[i] / 2) 点积分。如果采用这种方法,节点 i 子树中所有节点 j 的金币数 coins[j] 将会减少至 floor(coins[j] / 2) 。 返回收集 所有 树节点的金币之后可以获得的最大积分。

示例 1:

``` 输入:edges = [[0,1],[1,2],[2,3]], coins = [10,10,3,3], k = 5 输出:11
解释: 使用第一种方法收集节点 0 上的所有金币。总积分 = 10 - 5 = 5 。 使用第一种方法收集节点 1 上的所有金币。总积分 = 5 + (10 - 5) = 10 。 使用第二种方法收集节点 2 上的所有金币。所以节点 3 上的金币将会变为 floor(3 / 2) = 1 ,总积分 = 10 + floor(3 / 2) = 11 。 使用第二种方法收集节点 3 上的所有金币。总积分 = 11 + floor(1 / 2) = 11. 可以证明收集所有节点上的金币能获得的最大积分是 11 。


**示例 2:**

**![](https://assets.leetcode.com/uploads/2023/09/18/ex2.png)**```
输入:edges = [[0,1],[0,2]], coins = [8,4,4], k = 0
输出:16
解释:
使用第一种方法收集所有节点上的金币,因此,总积分 = (8 - 0) + (4 - 0) + (4 - 0) = 16 。

提示:

  • n == coins.length
  • 2 <= n <= 105
  • 0 <= coins[i] <= 104
  • edges.length == n - 1
  • 0 <= edges[i][0], edges[i][1] < n
  • 0 <= k <= 104

Documentation

The Go Gopher

There is no documentation for this package.

Jump to

Keyboard shortcuts

? : This menu
/ : Search site
f or F : Jump to
y or Y : Canonical URL