切蛋糕的最小总开销 I
有一个 m x n 大小的矩形蛋糕,需要切成 1 x 1 的小块。
给你整数 m ,n 和两个数组:
horizontalCut 的大小为 m - 1 ,其中 horizontalCut[i] 表示沿着水平线 i 切蛋糕的开销。
verticalCut 的大小为 n - 1 ,其中 verticalCut[j] 表示沿着垂直线 j 切蛋糕的开销。
一次操作中,你可以选择任意不是 1 x 1 大小的矩形蛋糕并执行以下操作之一:
- 沿着水平线
i 切开蛋糕,开销为 horizontalCut[i] 。
- 沿着垂直线
j 切开蛋糕,开销为 verticalCut[j] 。
每次操作后,这块蛋糕都被切成两个独立的小蛋糕。
每次操作的开销都为最开始对应切割线的开销,并且不会改变。
请你返回将蛋糕全部切成 1 x 1 的蛋糕块的 最小 总开销。
示例 1:
**输入:**m = 3, n = 2, horizontalCut = [1,3], verticalCut = [5]
**输出:**13
解释:

- 沿着垂直线 0 切开蛋糕,开销为 5 。
- 沿着水平线 0 切开
3 x 1 的蛋糕块,开销为 1 。
- 沿着水平线 0 切开
3 x 1 的蛋糕块,开销为 1 。
- 沿着水平线 1 切开
2 x 1 的蛋糕块,开销为 3 。
- 沿着水平线 1 切开
2 x 1 的蛋糕块,开销为 3 。
总开销为 5 + 1 + 1 + 3 + 3 = 13 。
示例 2:
**输入:**m = 2, n = 2, horizontalCut = [7], verticalCut = [4]
**输出:**15
解释:
- 沿着水平线 0 切开蛋糕,开销为 7 。
- 沿着垂直线 0 切开
1 x 2 的蛋糕块,开销为 4 。
- 沿着垂直线 0 切开
1 x 2 的蛋糕块,开销为 4 。
总开销为 7 + 4 + 4 = 15 。
提示:
1 <= m, n <= 20
horizontalCut.length == m - 1
verticalCut.length == n - 1
1 <= horizontalCut[i], verticalCut[i] <= 103