Documentation
¶
Overview ¶
Package f64 provides float64 vector primitives.
Index ¶
- func Add(dst, s []float64)
- func AddConst(alpha float64, x []float64)
- func AxpyInc(alpha float64, x, y []float64, n, incX, incY, ix, iy uintptr)
- func AxpyIncTo(dst []float64, incDst, idst uintptr, alpha float64, x, y []float64, ...)
- func AxpyUnitary(alpha float64, x, y []float64)
- func AxpyUnitaryTo(dst []float64, alpha float64, x, y []float64)
- func CumProd(dst, s []float64) []float64
- func CumSum(dst, s []float64) []float64
- func Div(dst, s []float64)
- func DivTo(dst, x, y []float64) []float64
- func DotInc(x, y []float64, n, incX, incY, ix, iy uintptr) (sum float64)
- func DotUnitary(x, y []float64) (sum float64)
- func GemvN(m, n uintptr, alpha float64, a []float64, lda uintptr, x []float64, ...)
- func GemvT(m, n uintptr, alpha float64, a []float64, lda uintptr, x []float64, ...)
- func Ger(m, n uintptr, alpha float64, x []float64, incX uintptr, y []float64, ...)
- func L1Dist(s, t []float64) float64
- func L1Norm(x []float64) (sum float64)
- func L1NormInc(x []float64, n, incX int) (sum float64)
- func L2DistanceUnitary(x, y []float64) (norm float64)
- func L2NormInc(x []float64, n, incX uintptr) (norm float64)
- func L2NormUnitary(x []float64) (norm float64)
- func LinfDist(s, t []float64) float64
- func ScalInc(alpha float64, x []float64, n, incX uintptr)
- func ScalIncTo(dst []float64, incDst uintptr, alpha float64, x []float64, n, incX uintptr)
- func ScalUnitary(alpha float64, x []float64)
- func ScalUnitaryTo(dst []float64, alpha float64, x []float64)
- func Sum(x []float64) float64
Constants ¶
This section is empty.
Variables ¶
This section is empty.
Functions ¶
func AxpyInc ¶
AxpyInc is
for i := 0; i < int(n); i++ {
y[iy] += alpha * x[ix]
ix += incX
iy += incY
}
func AxpyIncTo ¶
func AxpyIncTo(dst []float64, incDst, idst uintptr, alpha float64, x, y []float64, n, incX, incY, ix, iy uintptr)
AxpyIncTo is
for i := 0; i < int(n); i++ {
dst[idst] = alpha*x[ix] + y[iy]
ix += incX
iy += incY
idst += incDst
}
func CumProd ¶
CumProd is
if len(s) == 0 {
return dst
}
dst[0] = s[0]
for i, v := range s[1:] {
dst[i+1] = dst[i] * v
}
return dst
func CumSum ¶
CumSum is
if len(s) == 0 {
return dst
}
dst[0] = s[0]
for i, v := range s[1:] {
dst[i+1] = dst[i] + v
}
return dst
func DotInc ¶
DotInc is
for i := 0; i < int(n); i++ {
sum += y[iy] * x[ix]
ix += incX
iy += incY
}
return sum
func GemvN ¶
func GemvN(m, n uintptr, alpha float64, a []float64, lda uintptr, x []float64, incX uintptr, beta float64, y []float64, incY uintptr)
GemvN computes
y = alpha * A * x + beta * y
where A is an m×n dense matrix, x and y are vectors, and alpha and beta are scalars.
func GemvT ¶
func GemvT(m, n uintptr, alpha float64, a []float64, lda uintptr, x []float64, incX uintptr, beta float64, y []float64, incY uintptr)
GemvT computes
y = alpha * Aᵀ * x + beta * y
where A is an m×n dense matrix, x and y are vectors, and alpha and beta are scalars.
func Ger ¶
func Ger(m, n uintptr, alpha float64, x []float64, incX uintptr, y []float64, incY uintptr, a []float64, lda uintptr)
Ger performs the rank-one operation
A += alpha * x * yᵀ
where A is an m×n dense matrix, x and y are vectors, and alpha is a scalar.
func L1Dist ¶
L1Dist is
var norm float64
for i, v := range s {
norm += math.Abs(t[i] - v)
}
return norm
func L1NormInc ¶
L1NormInc is
for i := 0; i < n*incX; i += incX {
sum += math.Abs(x[i])
}
return sum
func L2DistanceUnitary ¶
L2DistanceUnitary returns the L2-norm of x-y.
var scale float64
sumSquares := 1.0
for i, v := range x {
v -= y[i]
if v == 0 {
continue
}
absxi := math.Abs(v)
if math.IsNaN(absxi) {
return math.NaN()
}
if scale < absxi {
s := scale / absxi
sumSquares = 1 + sumSquares*s*s
scale = absxi
} else {
s := absxi / scale
sumSquares += s * s
}
}
if math.IsInf(scale, 1) {
return math.Inf(1)
}
return scale * math.Sqrt(sumSquares)
func L2NormInc ¶
L2NormInc returns the L2-norm of x.
var scale float64
sumSquares := 1.0
for ix := uintptr(0); ix < n*incX; ix += incX {
val := x[ix]
if val == 0 {
continue
}
absxi := math.Abs(val)
if math.IsNaN(absxi) {
return math.NaN()
}
if scale < absxi {
s := scale / absxi
sumSquares = 1 + sumSquares*s*s
scale = absxi
} else {
s := absxi / scale
sumSquares += s * s
}
}
if math.IsInf(scale, 1) {
return math.Inf(1)
}
return scale * math.Sqrt(sumSquares)
func L2NormUnitary ¶
L2NormUnitary returns the L2-norm of x.
var scale float64
sumSquares := 1.0
for _, v := range x {
if v == 0 {
continue
}
absxi := math.Abs(v)
if math.IsNaN(absxi) {
return math.NaN()
}
if scale < absxi {
s := scale / absxi
sumSquares = 1 + sumSquares*s*s
scale = absxi
} else {
s := absxi / scale
sumSquares += s * s
}
if math.IsInf(scale, 1) {
return math.Inf(1)
}
}
return scale * math.Sqrt(sumSquares)
func LinfDist ¶
LinfDist is
var norm float64
if len(s) == 0 {
return 0
}
norm = math.Abs(t[0] - s[0])
for i, v := range s[1:] {
absDiff := math.Abs(t[i+1] - v)
if absDiff > norm || math.IsNaN(norm) {
norm = absDiff
}
}
return norm
func ScalIncTo ¶
ScalIncTo is
var idst, ix uintptr
for i := 0; i < int(n); i++ {
dst[idst] = alpha * x[ix]
ix += incX
idst += incDst
}
Types ¶
This section is empty.
Click to show internal directories.
Click to hide internal directories.