题目
We have an array A
of non-negative integers.
For every (contiguous) subarray B = [A[i], A[i+1], ..., A[j]]
(with i <= j
), we take the bitwise OR of all the elements in B
, obtaining a result A[i] | A[i+1] | ... | A[j]
.
Return the number of possible results. (Results that occur more than once are only counted once in the final answer.)
Example 1:
Input: [0]
Output: 1
Explanation:
There is only one possible result: 0.
Example 2:
Input: [1,1,2]
Output: 3
Explanation:
The possible subarrays are [1], [1], [2], [1, 1], [1, 2], [1, 1, 2].
These yield the results 1, 1, 2, 1, 3, 3.
There are 3 unique values, so the answer is 3.
Example 3:
Input: [1,2,4]
Output: 6
Explanation:
The possible results are 1, 2, 3, 4, 6, and 7.
Note:
1 <= A.length <= 50000
0 <= A[i] <= 10^9
题目大意
我们有一个非负整数数组 A。对于每个(连续的)子数组 B = [A[i], A[i+1], ..., A[j]] ( i <= j),我们对 B 中的每个元素进行按位或操作,获得结果 A[i] | A[i+1] | ... | A[j]。返回可能结果的数量。(多次出现的结果在最终答案中仅计算一次。)
解题思路
- 给出一个数组,要求求出这个数组所有的子数组中,每个集合内所有数字取
|
运算以后,不同结果的种类数。
- 这道题可以这样考虑,第一步,先考虑所有的子数组如何得到,以
[001, 011, 100, 110, 101]
为例,所有的子数组集合如下:
[001]
[001 011] [011]
[001 011 100] [011 100] [100]
[001 011 100 110] [011 100 110] [100 110] [110]
[001 011 100 110 101] [011 100 110 101] [100 110 101] [110 101] [101]
可以发现,从左往右遍历原数组,每次新来的一个元素,依次加入到之前已经生成过的集合中,再以自己为单独集合。这样就可以生成原数组的所有子集。
- 第二步,将每一行的子集内的所有元素都进行
|
运算,得到:
001
011 011
111 111 100
111 111 110 110
111 111 111 111 101
001
011
111 100
111 110
111 101
由于二进制位不超过 32 位,所以这里每一行最多不会超过 32 个数。所以最终时间复杂度不会超过 O(32 N),即 O(K * N)。最后将这每一行的数字都放入最终的 map 中去重即可。