The plugin generates mock-metrics based on different algorithms like sine-wave
functions, random numbers and more with the configured names and tags. Those
metrics are usefull during testing (e.g. processors) or if random data is
required.
⭐ Telegraf v1.22.0
🏷️ testing
💻 all
Global configuration options
In addition to the plugin-specific configuration settings, plugins support
additional global and plugin configuration settings. These settings are used to
modify metrics, tags, and field or create aliases and configure ordering, etc.
See the CONFIGURATION.md for more details.
Configuration
# Generate metrics for test and demonstration purposes
[[inputs.mock]]
## Set the metric name to use for reporting
metric_name = "mock"
## Optional string key-value pairs of tags to add to all metrics
# [inputs.mock.tags]
# "key" = "value"
## One or more mock data fields *must* be defined.
# [[inputs.mock.constant]]
# name = "constant"
# value = value_of_any_type
# [[inputs.mock.random]]
# name = "rand"
# min = 1.0
# max = 6.0
# [[inputs.mock.sine_wave]]
# name = "wave"
# amplitude = 1.0
# period = 0.5
# phase = 20.0
# base_line = 0.0
# [[inputs.mock.step]]
# name = "plus_one"
# start = 0.0
# step = 1.0
# [[inputs.mock.stock]]
# name = "abc"
# price = 50.00
# volatility = 0.2
The mock plugin only requires that:
- Metric name is set
- One of the data field algorithms is defined
Available Algorithms
The available algorithms for generating mock data include:
constant: generate a field with the given value of type string, float, int
or bool
random: generate a random float, inclusive of min and max
sine_wave: produce a sine wave with a certain amplitude, period and baseline
step: always add the step value, negative values accepted
stock: generate fake, stock-like price values based on a volatility variable
Metrics
Metrics are entirely based on the user's own configuration and settings.
Example Output
The following example shows all available algorithms configured with an
additional two tags as well:
mock_sensors,building=5A,site=FTC random=4.875966794516125,abc=50,wave=0,plus_one=0 1632170840000000000
mock_sensors,building=5A,site=FTC random=5.738651873834452,abc=45.095549448434774,wave=5.877852522924732,plus_one=1 1632170850000000000
mock_sensors,building=5A,site=FTC random=1.0429328917205203,abc=51.928560083072924,wave=9.510565162951535,plus_one=2 1632170860000000000
mock_sensors,building=5A,site=FTC random=5.290188595384418,abc=44.41090520217027,wave=9.510565162951536,plus_one=3 1632170870000000000
mock_sensors,building=5A,site=FTC random=2.0724967227069135,abc=47.212167806890314,wave=5.877852522924733,plus_one=4 1632170880000000000