lattigo

module
v1.0.1 Latest Latest
Warning

This package is not in the latest version of its module.

Go to latest
Published: Sep 24, 2019 License: Apache-2.0

README

Lattigo: lattice-based cryptographic library in Go

The Lattigo library unleashes the potential of lattice-based cryptography in secure multiparty computation for modern software stacks.

Build Status

Lattigo is a Go package implementing lattice-based cryptographic primitives. The library features:

  • A pure Go implementation bringing code-simplicity and easy builds.
  • A public interface for an efficient multiprecision polynomial arithmetic layer.
  • Comparable performance to state-of-the-art C++ libraries.

Lattigo aims at enabling fast prototyping of secure-multiparty computation solutions based on distributed homomorphic cryptosystems, by harnessing Go's natural concurrency model.

Library overview

The library comprises the following sub-packages:

  • lattigo/ring: RNS-accelerated modular arithmetic operations for polynomials, including: RNS basis extension; RNS rescaling; number theoretic transform (NTT); uniform, Gaussian and ternary sampling.

  • lattigo/bfv: RNS-accelerated Fan-Vercauteren version of Brakerski's scale invariant homomorphic encryption scheme. It provides modular arithmetic over the integers.

  • lattigo/ckks: RNS-accelerated version of the Homomorphic Encryption for Arithmetic for Approximate Numbers (HEAAN, a.k.a. CKKS) scheme. It provides approximate arithmetic over the complex numbers.

  • lattigo/dbfv and lattigo/dckks: Distributed (or threshold) versions of the BFV and CKKS schemes that enable secure multiparty computation solutions with secret-shared secret keys.

  • lattigo/examples: Executable Go programs demonstrating the usage of the Lattigo library. Note that each subpackage includes test files that further demonstrates the usage of Lattigo primitives.

  • lattigo/utils: Supporting structures and functions.

Roadmap

v1.0b (17 Aug. 2019)
  • First public beta release
v1.0 (Sept. 2019)
  • Full godoc documentation
  • Memory optimizations
Upcoming features
  • Bootstrapping for CKKS
  • Network layer implementation of SMC-supporting protocols

Disclaimer

The library is still at an experimental stage and should be used for research purposes only.

License

Lattigo is licenced under the Apache 2.0 License.

Contact

If you want to contribute to Lattigo or you have any suggestion, do not hesitate to contact us at lattigo@listes.epfl.ch.

Citing

Please use the following BibTex entry for citing Lattigo:

@misc{lattigo,
    title = {Lattigo 1.0},
    howpublished = {Online: \url{http://github.com/ldsec/lattigo}},
    month = aug,
    year = 2019,
    note = {EPFL-LDS}
}

References

  1. Somewhat Practical Fully Homomorphic Encryption (https://eprint.iacr.org/2012/144).
  2. A Full RNS Variant of FV Like Somewhat Homomorphic Encryption Schemes (https://eprint.iacr.org/2016/510)
  3. An Improved RNS Variant of the BFV Homomorphic Encryption Scheme (https://eprint.iacr.org/2018/117)
  4. Homomorphic Encryption for Arithmetic of Approximate Numbers (https://eprint.iacr.org/2016/421)
  5. A Full RNS Variant of Approximate Homomorphic Encryption (https://eprint.iacr.org/2018/931)
  6. Improved Bootstrapping for Approximate Homomorphic Encryption (https://eprint.iacr.org/2018/1043)
  7. Post-quantum key exchange - a new hope (https://eprint.iacr.org/2015/1092)
  8. Faster arithmetic for number-theoretic transforms (https://arxiv.org/abs/1205.2926)
  9. Speeding up the Number Theoretic Transform for Faster Ideal Lattice-Based Cryptography (https://eprint.iacr.org/2016/504)
  10. Gaussian sampling in lattice-based cryptography (https://tel.archives-ouvertes.fr/tel-01245066v2)

Directories

Path Synopsis
examples
bfv command
ckks command
==== Initial package ==== This package implements 128-bit ("double double") floating point using a pair of 64-bit hardware floating point values and standard hardware floating point operations.
==== Initial package ==== This package implements 128-bit ("double double") floating point using a pair of 64-bit hardware floating point values and standard hardware floating point operations.
Package containing helper structures and function
Package containing helper structures and function

Jump to

Keyboard shortcuts

? : This menu
/ : Search site
f or F : Jump to
y or Y : Canonical URL