Documentation
¶
Overview ¶
Updates certain properties of an anomaly detection job.
Index ¶
- Variables
- type NewUpdateJob
- type Request
- type Response
- type UpdateJob
- func (r UpdateJob) Do(ctx context.Context) (*Response, error)
- func (r *UpdateJob) Header(key, value string) *UpdateJob
- func (r *UpdateJob) HttpRequest(ctx context.Context) (*http.Request, error)
- func (r *UpdateJob) JobId(v string) *UpdateJob
- func (r UpdateJob) Perform(ctx context.Context) (*http.Response, error)
- func (r *UpdateJob) Raw(raw io.Reader) *UpdateJob
- func (r *UpdateJob) Request(req *Request) *UpdateJob
Constants ¶
This section is empty.
Variables ¶
var ErrBuildPath = errors.New("cannot build path, check for missing path parameters")
ErrBuildPath is returned in case of missing parameters within the build of the request.
Functions ¶
This section is empty.
Types ¶
type NewUpdateJob ¶
NewUpdateJob type alias for index.
func NewUpdateJobFunc ¶
func NewUpdateJobFunc(tp elastictransport.Interface) NewUpdateJob
NewUpdateJobFunc returns a new instance of UpdateJob with the provided transport. Used in the index of the library this allows to retrieve every apis in once place.
type Request ¶
type Request struct {
// AllowLazyOpen Advanced configuration option. Specifies whether this job can open when
// there is insufficient machine learning node capacity for it to be
// immediately assigned to a node. If `false` and a machine learning node
// with capacity to run the job cannot immediately be found, the open
// anomaly detection jobs API returns an error. However, this is also
// subject to the cluster-wide `xpack.ml.max_lazy_ml_nodes` setting. If this
// option is set to `true`, the open anomaly detection jobs API does not
// return an error and the job waits in the opening state until sufficient
// machine learning node capacity is available.
AllowLazyOpen *bool `json:"allow_lazy_open,omitempty"`
AnalysisLimits *types.AnalysisMemoryLimit `json:"analysis_limits,omitempty"`
// BackgroundPersistInterval Advanced configuration option. The time between each periodic persistence
// of the model.
// The default value is a randomized value between 3 to 4 hours, which
// avoids all jobs persisting at exactly the same time. The smallest allowed
// value is 1 hour.
// For very large models (several GB), persistence could take 10-20 minutes,
// so do not set the value too low.
// If the job is open when you make the update, you must stop the datafeed,
// close the job, then reopen the job and restart the datafeed for the
// changes to take effect.
BackgroundPersistInterval types.Duration `json:"background_persist_interval,omitempty"`
CategorizationFilters []string `json:"categorization_filters,omitempty"`
// CustomSettings Advanced configuration option. Contains custom meta data about the job.
// For example, it can contain custom URL information as shown in Adding
// custom URLs to machine learning results.
CustomSettings map[string]json.RawMessage `json:"custom_settings,omitempty"`
// DailyModelSnapshotRetentionAfterDays Advanced configuration option, which affects the automatic removal of old
// model snapshots for this job. It specifies a period of time (in days)
// after which only the first snapshot per day is retained. This period is
// relative to the timestamp of the most recent snapshot for this job. Valid
// values range from 0 to `model_snapshot_retention_days`. For jobs created
// before version 7.8.0, the default value matches
// `model_snapshot_retention_days`.
DailyModelSnapshotRetentionAfterDays *int64 `json:"daily_model_snapshot_retention_after_days,omitempty"`
// Description A description of the job.
Description *string `json:"description,omitempty"`
// Detectors An array of detector update objects.
Detectors []types.Detector `json:"detectors,omitempty"`
// Groups A list of job groups. A job can belong to no groups or many.
Groups []string `json:"groups,omitempty"`
ModelPlotConfig *types.ModelPlotConfig `json:"model_plot_config,omitempty"`
ModelPruneWindow types.Duration `json:"model_prune_window,omitempty"`
// ModelSnapshotRetentionDays Advanced configuration option, which affects the automatic removal of old
// model snapshots for this job. It specifies the maximum period of time (in
// days) that snapshots are retained. This period is relative to the
// timestamp of the most recent snapshot for this job.
ModelSnapshotRetentionDays *int64 `json:"model_snapshot_retention_days,omitempty"`
// PerPartitionCategorization Settings related to how categorization interacts with partition fields.
PerPartitionCategorization *types.PerPartitionCategorization `json:"per_partition_categorization,omitempty"`
// RenormalizationWindowDays Advanced configuration option. The period over which adjustments to the
// score are applied, as new data is seen.
RenormalizationWindowDays *int64 `json:"renormalization_window_days,omitempty"`
// ResultsRetentionDays Advanced configuration option. The period of time (in days) that results
// are retained. Age is calculated relative to the timestamp of the latest
// bucket result. If this property has a non-null value, once per day at
// 00:30 (server time), results that are the specified number of days older
// than the latest bucket result are deleted from Elasticsearch. The default
// value is null, which means all results are retained.
ResultsRetentionDays *int64 `json:"results_retention_days,omitempty"`
}
Request holds the request body struct for the package updatejob
type Response ¶
type Response struct {
AllowLazyOpen bool `json:"allow_lazy_open"`
AnalysisConfig types.AnalysisConfigRead `json:"analysis_config"`
AnalysisLimits types.AnalysisLimits `json:"analysis_limits"`
BackgroundPersistInterval types.Duration `json:"background_persist_interval,omitempty"`
CreateTime int64 `json:"create_time"`
CustomSettings map[string]string `json:"custom_settings,omitempty"`
DailyModelSnapshotRetentionAfterDays int64 `json:"daily_model_snapshot_retention_after_days"`
DataDescription types.DataDescription `json:"data_description"`
DatafeedConfig *types.MLDatafeed `json:"datafeed_config,omitempty"`
Description *string `json:"description,omitempty"`
FinishedTime *int64 `json:"finished_time,omitempty"`
Groups []string `json:"groups,omitempty"`
JobId string `json:"job_id"`
JobType string `json:"job_type"`
JobVersion string `json:"job_version"`
ModelPlotConfig *types.ModelPlotConfig `json:"model_plot_config,omitempty"`
ModelSnapshotId *string `json:"model_snapshot_id,omitempty"`
ModelSnapshotRetentionDays int64 `json:"model_snapshot_retention_days"`
RenormalizationWindowDays *int64 `json:"renormalization_window_days,omitempty"`
ResultsIndexName string `json:"results_index_name"`
ResultsRetentionDays *int64 `json:"results_retention_days,omitempty"`
}
type UpdateJob ¶
type UpdateJob struct {
// contains filtered or unexported fields
}
func New ¶
func New(tp elastictransport.Interface) *UpdateJob
Updates certain properties of an anomaly detection job.
https://www.elastic.co/guide/en/elasticsearch/reference/current/ml-update-job.html
func (UpdateJob) Do ¶
Do runs the request through the transport, handle the response and returns a updatejob.Response
func (*UpdateJob) HttpRequest ¶
HttpRequest returns the http.Request object built from the given parameters.
func (UpdateJob) Perform ¶
Perform runs the http.Request through the provided transport and returns an http.Response.