AES Encoding Package

AES-256-GCM authenticated encryption with streaming I/O support.
AI Disclaimer (EU AI Act Article 50.4): AI assistance was used solely for testing, documentation, and bug resolution under human supervision.
Table of Contents
Overview
The aes package provides AES-256-GCM authenticated encryption for Go applications. It implements the encoding.Coder interface for consistent encryption/decryption operations across the golib ecosystem.
Design Philosophy
- Security First: Industry-standard AES-256-GCM authenticated encryption
- Simplicity: Clean API for both byte slices and streaming operations
- Performance: Hardware-accelerated on modern CPUs with AES-NI
- Memory Efficiency: Direct operations without intermediate buffers
- Thread Safety: Safe for concurrent use with separate instances
Key Features
| Feature |
Description |
| AES-256-GCM |
Industry-standard authenticated encryption |
| Authentication |
Built-in integrity and authenticity verification |
| Streaming Support |
io.Reader and io.Writer interfaces |
| Memory Efficient |
Direct byte slice operations |
| Thread-Safe |
Concurrent operations with separate instances |
| Key Generation |
Cryptographically secure random key/nonce generation |
| Hex Encoding |
Helper functions for hex key/nonce encoding |
Security
Cryptographic Specifications
| Component |
Specification |
Details |
| Algorithm |
AES-256 |
256-bit key size |
| Mode |
GCM |
Galois/Counter Mode |
| Key Size |
256 bits |
32 bytes |
| Nonce Size |
96 bits |
12 bytes (GCM standard) |
| Auth Tag |
128 bits |
16 bytes (tamper detection) |
| Performance |
Hardware-accelerated |
AES-NI support |
Security Properties
Confidentiality
- AES-256 ensures data cannot be read without the key
- Brute force resistance: 2^256 possible keys
- Quantum resistance: Still secure against known quantum attacks
Authenticity
- GCM tag ensures data comes from the key holder
- Prevents unauthorized parties from creating valid ciphertexts
- Non-repudiation within the system
Integrity
- Any modification to ciphertext is detected
- Tag verification fails if data is tampered with
- Protects against bit-flipping attacks
Security Level
- Meets NIST recommendations for sensitive data
- Approved for classified information (with proper key management)
- Resistant to known cryptanalytic attacks
Important Security Considerations
⚠️ Nonce Reuse: Never reuse a nonce with the same key. This catastrophically breaks GCM security.
⚠️ Key Management: Store keys securely. Never commit to version control or log them.
⚠️ Key Rotation: Rotate keys periodically (e.g., every 30-90 days for high-security applications).
⚠️ Error Handling: Always check authentication errors during decryption.
Architecture
Package Structure
encoding/aes/
├── interface.go # Public API and key generation
├── model.go # Core implementation (Coder interface)
└── errors.go # Error definitions (if exists)
Component Architecture
┌─────────────────────────────────────────────────────┐
│ AES Package │
│ │
│ ┌──────────────────────────────────────────────┐ │
│ │ Key & Nonce Generation │ │
│ │ - GenKey() (32 bytes) │ │
│ │ - GenNonce() (12 bytes) │ │
│ │ - GetHexKey() (from hex string) │ │
│ │ - GetHexNonce() (from hex string) │ │
│ └──────────────────────────────────────────────┘ │
│ │ │
│ ▼ │
│ ┌──────────────────────────────────────────────┐ │
│ │ Coder Interface │ │
│ │ - Encode(plaintext) → ciphertext │ │
│ │ - Decode(ciphertext) → plaintext │ │
│ │ - EncodeReader(io.Reader) → io.Reader │ │
│ │ - DecodeReader(io.Reader) → io.Reader │ │
│ │ - Reset() │ │
│ └──────────────────────────────────────────────┘ │
│ │ │
│ ▼ │
│ ┌──────────────────────────────────────────────┐ │
│ │ AES-256-GCM Engine │ │
│ │ - cipher.NewGCM() │ │
│ │ - Seal() / Open() │ │
│ │ - Authentication tag verification │ │
│ └──────────────────────────────────────────────┘ │
└─────────────────────────────────────────────────────┘
Data Flow
Encryption Flow:
Plaintext → AES-GCM Seal → [Nonce + Ciphertext + Tag] → Output
Decryption Flow:
Input → [Nonce + Ciphertext + Tag] → AES-GCM Open → Plaintext
↓
(Tag Verification)
Installation
go get github.com/nabbar/golib/encoding/aes
Dependencies:
- Go standard library (
crypto/aes, crypto/cipher, crypto/rand)
github.com/nabbar/golib/encoding (interface definitions)
Quick Start
Basic Encryption/Decryption
package main
import (
"fmt"
"log"
encaes "github.com/nabbar/golib/encoding/aes"
)
func main() {
// Generate a new key and nonce
key, err := encaes.GenKey()
if err != nil {
log.Fatal(err)
}
nonce, err := encaes.GenNonce()
if err != nil {
log.Fatal(err)
}
// Create a new coder
coder, err := encaes.New(key, nonce)
if err != nil {
log.Fatal(err)
}
defer coder.Reset()
// Encrypt data
plaintext := []byte("Secret message")
encrypted := coder.Encode(plaintext)
// Decrypt data
decrypted, err := coder.Decode(encrypted)
if err != nil {
log.Fatal("Decryption failed:", err)
}
fmt.Println(string(decrypted)) // Output: Secret message
}
Core Concepts
Key Management
A key is a 32-byte (256-bit) secret used for encryption and decryption.
Generate New Key:
// Cryptographically secure random key
key, err := encaes.GenKey()
if err != nil {
log.Fatal(err)
}
Load Key from Hex:
// From configuration file or environment variable
hexKey := "0123456789abcdef0123456789abcdef0123456789abcdef0123456789abcdef"
key, err := encaes.GetHexKey(hexKey)
if err != nil {
log.Fatal(err)
}
Store Key as Hex:
import "encoding/hex"
// Convert to hex for storage
hexString := hex.EncodeToString(key[:])
// Save to config file or secure storage
⚠️ Security Warning: Never commit keys to version control, log them, or transmit them over insecure channels.
Nonce Management
A nonce (Number used ONCE) is a 12-byte value that must be unique for each encryption with the same key.
Generate New Nonce:
// Cryptographically secure random nonce
nonce, err := encaes.GenNonce()
if err != nil {
log.Fatal(err)
}
Load Nonce from Hex:
hexNonce := "0123456789abcdef01234567" // 24 hex characters (12 bytes)
nonce, err := encaes.GetHexNonce(hexNonce)
if err != nil {
log.Fatal(err)
}
⚠️ Critical: Never reuse a nonce with the same key! This breaks GCM security catastrophically.
Best Practice: Generate a new nonce for each encryption, or use a counter that never repeats.
API Reference
Key/Nonce Generation
GenKey() ([32]byte, error)
Generates a cryptographically secure random 32-byte key.
key, err := encaes.GenKey()
if err != nil {
log.Fatal("Key generation failed:", err)
}
GenNonce() ([12]byte, error)
Generates a cryptographically secure random 12-byte nonce.
nonce, err := encaes.GenNonce()
if err != nil {
log.Fatal("Nonce generation failed:", err)
}
GetHexKey(s string) ([32]byte, error)
Decodes a hex-encoded string to a 32-byte key. Truncates if too long, zero-fills if too short.
key, err := encaes.GetHexKey("0123456789abcdef...")
GetHexNonce(s string) ([12]byte, error)
Decodes a hex-encoded string to a 12-byte nonce. Truncates if too long, zero-fills if too short.
nonce, err := encaes.GetHexNonce("0123456789abcdef01234567")
Coder Interface
New(key [32]byte, nonce [12]byte) (encoding.Coder, error)
Creates a new AES coder instance.
coder, err := encaes.New(key, nonce)
if err != nil {
log.Fatal("Coder creation failed:", err)
}
defer coder.Reset()
Encode(p []byte) []byte
Encrypts plaintext and returns ciphertext.
plaintext := []byte("Secret data")
ciphertext := coder.Encode(plaintext)
Decode(p []byte) ([]byte, error)
Decrypts ciphertext and returns plaintext. Returns error if authentication fails.
plaintext, err := coder.Decode(ciphertext)
if err != nil {
log.Fatal("Decryption failed (authentication error):", err)
}
Reset()
Clears internal state. Should be called when done with coder (use defer).
defer coder.Reset()
Streaming Operations
Encrypt Stream
EncodeReader(r io.Reader) io.Reader
Creates a reader that encrypts data on-the-fly.
file, _ := os.Open("plaintext.txt")
defer file.Close()
// Create encrypted reader
encryptedReader := coder.EncodeReader(file)
// Write encrypted data to output
output, _ := os.Create("encrypted.bin")
defer output.Close()
io.Copy(output, encryptedReader)
Decrypt Stream
DecodeReader(r io.Reader) io.Reader
Creates a reader that decrypts data on-the-fly.
file, _ := os.Open("encrypted.bin")
defer file.Close()
// Create decrypted reader
decryptedReader := coder.DecodeReader(file)
// Read decrypted data
output, _ := os.Create("decrypted.txt")
defer output.Close()
io.Copy(output, decryptedReader)
Example: Encrypt File
func encryptFile(inputPath, outputPath string, coder encoding.Coder) error {
// Open input file
input, err := os.Open(inputPath)
if err != nil {
return err
}
defer input.Close()
// Create output file
output, err := os.Create(outputPath)
if err != nil {
return err
}
defer output.Close()
// Encrypt and write
encryptedReader := coder.EncodeReader(input)
_, err = io.Copy(output, encryptedReader)
return err
}
Benchmark Results
| Operation |
Throughput |
Notes |
| Encrypt (1KB) |
~500 MB/s |
With AES-NI |
| Decrypt (1KB) |
~500 MB/s |
With AES-NI |
| Encrypt (1MB) |
~600 MB/s |
Larger blocks |
| Decrypt (1MB) |
~600 MB/s |
Larger blocks |
| Key Generation |
~50µs |
Random source dependent |
| Nonce Generation |
~50µs |
Random source dependent |
Benchmarks on Intel Core i7, Go 1.21, Linux
Hardware Acceleration
AES-NI Support:
- Modern Intel/AMD CPUs include AES-NI instructions
- Go's
crypto/aes automatically uses AES-NI when available
- Provides 3-5x performance improvement
- No code changes required
Verify AES-NI:
# Linux
grep -o 'aes' /proc/cpuinfo | head -1
# macOS
sysctl machdep.cpu.features | grep AES
Memory Usage
| Operation |
Memory |
Notes |
| Coder Instance |
~200 bytes |
Minimal overhead |
| Encode |
Input + 28 bytes |
Nonce (12) + Tag (16) |
| Decode |
Input - 28 bytes |
Removes nonce & tag |
| Stream Buffer |
4KB default |
Configurable |
Use Cases
Secure Configuration Files
import (
"os"
encaes "github.com/nabbar/golib/encoding/aes"
)
// Encrypt configuration
func SaveSecureConfig(config []byte, key [32]byte) error {
nonce, _ := encaes.GenNonce()
coder, _ := encaes.New(key, nonce)
defer coder.Reset()
encrypted := coder.Encode(config)
return os.WriteFile("config.enc", encrypted, 0600)
}
// Decrypt configuration
func LoadSecureConfig(key [32]byte) ([]byte, error) {
encrypted, err := os.ReadFile("config.enc")
if err != nil {
return nil, err
}
// Extract nonce from encrypted data
nonce := [12]byte{}
copy(nonce[:], encrypted[:12])
coder, _ := encaes.New(key, nonce)
defer coder.Reset()
return coder.Decode(encrypted)
}
Database Field Encryption
type User struct {
ID int
Username string
SSN []byte // Encrypted social security number
}
func (u *User) EncryptSSN(ssn string, coder encoding.Coder) {
u.SSN = coder.Encode([]byte(ssn))
}
func (u *User) DecryptSSN(coder encoding.Coder) (string, error) {
plaintext, err := coder.Decode(u.SSN)
if err != nil {
return "", err
}
return string(plaintext), nil
}
Secure File Storage
// Encrypt sensitive files before storing
func SecureUpload(file io.Reader, key [32]byte) error {
nonce, _ := encaes.GenNonce()
coder, _ := encaes.New(key, nonce)
defer coder.Reset()
// Encrypt stream
encrypted := coder.EncodeReader(file)
// Upload encrypted data
return uploadToStorage(encrypted)
}
API Response Encryption
func EncryptedResponse(w http.ResponseWriter, data []byte, coder encoding.Coder) {
encrypted := coder.Encode(data)
w.Header().Set("Content-Type", "application/octet-stream")
w.Header().Set("X-Encrypted", "AES-256-GCM")
w.Write(encrypted)
}
Secure Message Queue
// Encrypt messages before publishing
func PublishSecure(msg []byte, coder encoding.Coder) error {
encrypted := coder.Encode(msg)
return messageQueue.Publish(encrypted)
}
// Decrypt messages after consuming
func ConsumeSecure(encrypted []byte, coder encoding.Coder) ([]byte, error) {
return coder.Decode(encrypted)
}
Best Practices
1. Key Management
// ✅ Good: Load key from secure storage
key, err := loadKeyFromVault()
// ✅ Good: Generate new key for each session
key, err := encaes.GenKey()
// ❌ Bad: Hardcoded key in source
key := [32]byte{0x01, 0x02, ...} // Never do this!
// ❌ Bad: Key in version control
const KEY = "my-secret-key" // Never commit keys!
2. Nonce Usage
// ✅ Good: Generate new nonce per encryption
for _, msg := range messages {
nonce, _ := encaes.GenNonce()
coder, _ := encaes.New(key, nonce)
encrypted := coder.Encode(msg)
coder.Reset()
}
// ❌ Bad: Reusing nonce (catastrophic security failure!)
nonce, _ := encaes.GenNonce()
coder, _ := encaes.New(key, nonce)
for _, msg := range messages {
encrypted := coder.Encode(msg) // Same nonce!
}
3. Error Handling
// ✅ Good: Check all errors
plaintext, err := coder.Decode(encrypted)
if err != nil {
log.Printf("Decryption failed: %v", err)
return err
}
// ❌ Bad: Ignoring authentication errors
plaintext, _ := coder.Decode(encrypted) // Might be tampered!
4. Resource Cleanup
// ✅ Good: Always reset coder
coder, _ := encaes.New(key, nonce)
defer coder.Reset()
// ❌ Bad: No cleanup
coder, _ := encaes.New(key, nonce)
encrypted := coder.Encode(data)
// Memory leak if coder holds resources
5. Secure Storage
// ✅ Good: Store keys in environment or vault
key := os.Getenv("ENCRYPTION_KEY")
// or use HashiCorp Vault, AWS Secrets Manager, etc.
// ✅ Good: Encrypted key storage
encryptedKey := loadFromFile("key.enc")
key := decryptKeyWithMasterKey(encryptedKey)
// ❌ Bad: Plain text key file
key := readFromFile("key.txt") // Insecure!
Testing
Comprehensive testing documentation is available in TESTING.md.
Quick Test:
cd encoding/aes
go test -v -cover
Test Metrics:
- 126 test specifications
- 91.5% code coverage
- Ginkgo v2 + Gomega framework
- Edge case testing (invalid keys, corrupted data, etc.)
Contributing
Contributions are welcome! Please follow these guidelines:
Code Contributions
- Do not use AI to generate package implementation code
- AI may assist with tests, documentation, and bug fixing
- All contributions must pass existing tests
- Maintain or improve test coverage
- Follow existing code style
Security
- Report security vulnerabilities privately
- Do not disclose security issues publicly
- Follow responsible disclosure practices
- Test cryptographic changes thoroughly
Testing
- Write tests for all new features
- Test edge cases (invalid input, corrupted data)
- Verify authentication failures are detected
- Include benchmarks for performance-critical code
Documentation
- Update README.md for new features
- Add security warnings where appropriate
- Document all public APIs with GoDoc
- Provide usage examples
See CONTRIBUTING.md for detailed guidelines.
Future Enhancements
Potential improvements for future versions:
Algorithm Support
- ChaCha20-Poly1305 alternative (software-optimized)
- AES-128-GCM option (faster, still secure)
- Key derivation functions (PBKDF2, Argon2)
Features
- Automatic key rotation
- Nonce counter mode (deterministic nonces)
- Streaming authentication without buffering
- Multi-key support (key versioning)
Performance
- Zero-copy encryption where possible
- Batch encryption optimization
- Parallel encryption for large files
Security
- Key wrapping (encrypt-then-MAC for keys)
- Secure memory wiping
- Side-channel attack mitigation
- FIPS 140-2 compliance mode
Suggestions and contributions are welcome via GitHub issues.
Cryptography
Security Resources
License
MIT License - See LICENSE file for details.
Copyright (c) 2023 Nicolas JUHEL
Resources
Security Disclosure
If you discover a security vulnerability, please email security@example.com (or create a private security advisory on GitHub). Do not disclose security issues publicly.
This package is part of the golib project.