Documentation
¶
Overview ¶
Package queue delivers an implementation of lock-free concurrent queue based on the algorithm presented by Maged M. Michael and Michael L. Scot. in 1996: https://dl.acm.org/doi/10.1145/248052.248106
Pseudocode of non-blocking concurrent queue algorithm:
structure pointer_t {ptr: pointer to node_t, count: unsigned integer}
structure node_t {value: data type, next: pointer_t}
structure queue_t {Head: pointer_t, Tail: pointer_t}
initialize(Q: pointer to queue_t)
node = new_node() // Allocate a free node
node->next.ptr = NULL // Make it the only node in the linked list
Q->Head.ptr = Q->Tail.ptr = node // Both Head and Tail point to it
enqueue(Q: pointer to queue_t, value: data type)
E1: node = new_node() // Allocate a new node from the free list
E2: node->value = value // Copy enqueued value into node
E3: node->next.ptr = NULL // Set next pointer of node to NULL
E4: loop // Keep trying until Enqueue is done
E5: tail = Q->Tail // Read Tail.ptr and Tail.count together
E6: next = tail.ptr->next // Read next ptr and count fields together
E7: if tail == Q->Tail // Are tail and next consistent?
// Was Tail pointing to the last node?
E8: if next.ptr == NULL
// Try to link node at the end of the linked list
E9: if CAS(&tail.ptr->next, next, <node, next.count+1>)
E10: break // Enqueue is done. Exit loop
E11: endif
E12: else // Tail was not pointing to the last node
// Try to swing Tail to the next node
E13: CAS(&Q->Tail, tail, <next.ptr, tail.count+1>)
E14: endif
E15: endif
E16: endloop
// Enqueue is done. Try to swing Tail to the inserted node
E17: CAS(&Q->Tail, tail, <node, tail.count+1>)
dequeue(Q: pointer to queue_t, pvalue: pointer to data type): boolean
D1: loop // Keep trying until Dequeue is done
D2: head = Q->Head // Read Head
D3: tail = Q->Tail // Read Tail
D4: next = head.ptr->next // Read Head.ptr->next
D5: if head == Q->Head // Are head, tail, and next consistent?
D6: if head.ptr == tail.ptr // Is queue empty or Tail falling behind?
D7: if next.ptr == NULL // Is queue empty?
D8: return FALSE // Queue is empty, couldn't dequeue
D9: endif
// Tail is falling behind. Try to advance it
D10: CAS(&Q->Tail, tail, <next.ptr, tail.count+1>)
D11: else // No need to deal with Tail
// Read value before CAS
// Otherwise, another dequeue might free the next node
D12: *pvalue = next.ptr->value
// Try to swing Head to the next node
D13: if CAS(&Q->Head, head, <next.ptr, head.count+1>)
D14: break // Dequeue is done. Exit loop
D15: endif
D16: endif
D17: endif
D18: endloop
D19: free(head.ptr) // It is safe now to free the old node
D20: return TRUE // Queue was not empty, dequeue succeeded
Package queue implements a lock-free queue for asynchronous tasks.
Index ¶
Constants ¶
This section is empty.
Variables ¶
This section is empty.
Functions ¶
Types ¶
type AsyncTaskQueue ¶
AsyncTaskQueue is a queue storing asynchronous tasks.
func NewLockFreeQueue ¶
func NewLockFreeQueue() AsyncTaskQueue
NewLockFreeQueue instantiates and returns a lockFreeQueue.
type EventPriority ¶
type EventPriority int
EventPriority is the priority of an event.
const ( // HighPriority is for the tasks expected to be executed // as soon as possible. HighPriority EventPriority = iota // LowPriority is for the tasks that won't matter much // even if they are deferred a little bit. LowPriority )
Click to show internal directories.
Click to hide internal directories.