README
¶
term-llm
A Swiss Army knife for your terminal—AI-powered commands, answers, and images at your fingertips.
Features
- Command suggestions: Natural language → executable shell commands
- Ask questions: Get answers with optional web search
- File editing: Edit code with AI assistance (supports line ranges)
- File context: Include files, clipboard, stdin, or line ranges as context (
-f) - Image generation: Create and edit images (Gemini, OpenAI, xAI, Flux)
- MCP servers: Extend with external tools via Model Context Protocol
- Multiple providers: Anthropic, OpenAI, Codex, xAI (Grok), OpenRouter, Gemini, Gemini CLI, Zen (free tier), Claude CLI, Ollama, LM Studio
- Local LLMs: Run with Ollama, LM Studio, or any OpenAI-compatible server
- Free tier available: Try it out with Zen (no API key required)
$ term-llm exec "find all go files modified today"
> find . -name "*.go" -mtime 0 Uses find with name pattern
fd -e go --changed-within 1d Uses fd (faster alternative)
find . -name "*.go" -newermt "today" Alternative find syntax
something else...
Installation
One-liner (recommended)
curl -fsSL https://raw.githubusercontent.com/samsaffron/term-llm/main/install.sh | sh
Or with options:
curl -fsSL https://raw.githubusercontent.com/samsaffron/term-llm/main/install.sh | sh -s -- --version v0.1.0 --install-dir ~/bin
Go install
go install github.com/samsaffron/term-llm@latest
Build from source
git clone https://github.com/samsaffron/term-llm
cd term-llm
go build
Setup
On first run, term-llm will prompt you to choose a provider (Anthropic, OpenAI, Codex, xAI, OpenRouter, Gemini, Gemini CLI, Zen, Ollama, or LM Studio).
Option 1: Try it free with Zen
OpenCode Zen provides free access to GLM 4.7 and other models. No API key required:
term-llm exec --provider zen "list files"
term-llm ask --provider zen "explain git rebase"
Or configure as default:
# In ~/.config/term-llm/config.yaml
default_provider: zen
Option 2: Use API key
Set your API key as an environment variable:
# For Anthropic
export ANTHROPIC_API_KEY=your-key
# For OpenAI
export OPENAI_API_KEY=your-key
# For xAI (Grok)
export XAI_API_KEY=your-key
# For OpenRouter
export OPENROUTER_API_KEY=your-key
# For Gemini
export GEMINI_API_KEY=your-key
Option 3: Use xAI (Grok)
xAI provides access to Grok models with native web search and X (Twitter) search capabilities.
# In ~/.config/term-llm/config.yaml
default_provider: xai
providers:
xai:
model: grok-4-1-fast # default model
Available models:
| Model | Context | Description |
|---|---|---|
grok-4-1-fast |
2M | Latest, best for tool calling (default) |
grok-4-1-fast-reasoning |
2M | With chain-of-thought reasoning |
grok-4-1-fast-non-reasoning |
2M | Faster, no reasoning overhead |
grok-4 |
256K | Base Grok 4 model |
grok-3 / grok-3-fast |
131K | Previous generation |
grok-3-mini / grok-3-mini-fast |
131K | Smaller, faster |
grok-code-fast-1 |
256K | Optimized for coding tasks |
Or use the --provider flag:
term-llm ask --provider xai "explain quantum computing"
term-llm ask --provider xai -s "latest xAI news" # uses native web + X search
term-llm ask --provider xai:grok-4-1-fast-reasoning "solve this step by step"
term-llm ask --provider xai:grok-code-fast-1 "review this code"
Option 4: Use OpenRouter
OpenRouter provides a unified OpenAI-compatible API across many models. term-llm sends attribution headers by default.
# In ~/.config/term-llm/config.yaml
default_provider: openrouter
providers:
openrouter:
model: x-ai/grok-code-fast-1
app_url: https://github.com/samsaffron/term-llm
app_title: term-llm
Model Discovery
List available models from any supported provider:
term-llm models --provider anthropic # List Anthropic models
term-llm models --provider openrouter # List OpenRouter models
term-llm models --provider ollama # List local Ollama models
term-llm models --provider lmstudio # List local LM Studio models
term-llm models --json # Output as JSON
Option 5: Use local LLMs (Ollama, LM Studio)
Run models locally with Ollama or LM Studio:
# List available models from your local server
term-llm models --provider ollama
term-llm models --provider lmstudio
# Configure in ~/.config/term-llm/config.yaml
default_provider: ollama
providers:
ollama:
type: openai_compatible
base_url: http://localhost:11434/v1
model: llama3.2:latest
lmstudio:
type: openai_compatible
base_url: http://localhost:1234/v1
model: deepseek-coder-v2
For other OpenAI-compatible servers (vLLM, text-generation-inference, etc.):
providers:
my-server:
type: openai_compatible
base_url: http://your-server:8080/v1
model: mixtral-8x7b
models: # optional: list models for shell autocomplete
- mixtral-8x7b
- llama-3-70b
The models list enables tab completion for --provider my-server:<TAB>. The configured model is always included in completions.
Option 6: Use Claude Code (claude-bin)
If you have Claude Code installed and logged in, you can use the claude-bin provider to run completions via the Claude Agent SDK. This requires no API key - it uses Claude Code's existing authentication.
# Use directly via --provider flag (no config needed)
term-llm ask --provider claude-bin "explain this code"
term-llm ask --provider claude-bin:haiku "quick question" # use haiku model
term-llm exec --provider claude-bin "list files" # command suggestions
term-llm ask --provider claude-bin -s "latest news" # with web search
# Or configure as default
# In ~/.config/term-llm/config.yaml
default_provider: claude-bin
providers:
claude-bin:
model: sonnet # opus, sonnet, or haiku
Features:
- No API key required - uses Claude Code's OAuth authentication
- Full tool support via MCP (exec, search, edit all work)
- Model selection:
opus,sonnet(default),haiku - Works immediately if Claude Code is installed and logged in
Option 7: Use existing CLI credentials
If you have Codex or gemini-cli installed and logged in, term-llm can use those credentials directly:
# Use Codex credentials (no config needed)
term-llm ask --provider codex "explain this code"
# Use gemini-cli credentials (no config needed)
term-llm ask --provider gemini-cli "explain this code"
Or configure as default:
# In ~/.config/term-llm/config.yaml
default_provider: codex # uses ~/.codex/auth.json
# Or for Gemini CLI:
default_provider: gemini-cli # uses ~/.gemini/oauth_creds.json
OpenAI-compatible providers support two URL options:
base_url: Base URL (e.g.,https://api.cerebras.ai/v1) -/chat/completionsis appended automaticallyurl: Full URL (e.g.,https://api.cerebras.ai/v1/chat/completions) - used as-is without appending
Use url when your endpoint doesn't follow the standard /chat/completions path, or to paste URLs directly from API documentation.
Usage
term-llm exec "your request here"
Use arrow keys to select a command, Enter to execute, or press h for detailed help on the highlighted command. Select "something else..." to refine your request.
Flags
| Flag | Short | Description |
|---|---|---|
--provider |
Override provider, optionally with model (e.g., openai:gpt-4o) |
|
--file |
-f |
File(s) to include as context (supports globs, line ranges, 'clipboard') |
--auto-pick |
-a |
Auto-execute the best suggestion without prompting |
--max N |
-n N |
Limit to N options in the selection UI |
--search |
-s |
Enable web search (configurable: Exa, Brave, Google, DuckDuckGo) and page reading |
--native-search |
Use provider's native search (override config) | |
--no-native-search |
Force external search tools instead of native | |
--print-only |
-p |
Print the command instead of executing it |
--debug |
-d |
Show provider debug information |
--debug-raw |
Emit raw debug logs with timestamps (tool calls/results, raw requests) |
Examples
term-llm exec "list files by size" # interactive selection
term-llm exec "compress folder" --auto-pick # auto-execute best
term-llm exec "find large files" -n 3 # show max 3 options
term-llm exec "install latest node" -s # with web search
term-llm exec "disk usage" -p # print only
term-llm exec --provider zen "git status" # use specific provider
term-llm exec --provider openai:gpt-4o "list" # provider with specific model
term-llm exec --debug-raw "list files" # raw debug logs with timestamps
term-llm exec --provider ollama:llama3.2 "list" # use local Ollama model
term-llm exec --provider lmstudio:deepseek "list" # use LM Studio model
term-llm ask --provider openai:gpt-5.2-xhigh "complex question" # max reasoning
term-llm exec --provider openai:gpt-5.2-low "quick task" # faster/cheaper
# With file context
term-llm exec -f error.log "find the cause" # analyze a file
term-llm exec -f "*.go" "run tests for these" # glob pattern
git diff | term-llm exec "commit message" # pipe stdin
# Ask a question
term-llm ask "What is the difference between TCP and UDP?"
term-llm ask "latest node.js version" -s # with web search
term-llm ask --provider zen "explain docker" # use specific provider
term-llm ask -f code.go "explain this code" # with file context
term-llm ask -f code.go:50-100 "explain this function" # specific lines
term-llm ask -f clipboard "what is this?" # from clipboard
cat README.md | term-llm ask "summarize this" # pipe stdin
term-llm ask --debug-raw "latest zig release" # raw debug logs with timestamps
# Edit files
term-llm edit "add error handling" -f main.go
term-llm edit "refactor loop" -f utils.go:20-40 # only lines 20-40
term-llm edit "add tests" -f "*.go" --dry-run # preview changes
term-llm edit "use the API" -f main.go -c api/client.go # with context
# Generate images
term-llm image "a sunset over mountains"
term-llm image "logo design" --provider flux # use specific provider
term-llm image "make it purple" -i photo.png # edit existing image
Debugging
Use --debug to print provider-level diagnostics (requests, model info, etc.). Use --debug-raw for a timestamped, raw view of tool calls, tool results, and reconstructed requests. Raw debug is most useful for troubleshooting tool calling and search.
Image Generation
Generate and edit images using AI models from Gemini, OpenAI, or Flux (Black Forest Labs).
term-llm image "a robot cat on a rainbow"
By default, images are:
- Saved to
~/Pictures/term-llm/with timestamped filenames - Displayed in terminal via
icat(if available) - Copied to clipboard (actual image data, pasteable in apps)
Image Flags
| Flag | Short | Description |
|---|---|---|
--input |
-i |
Input image to edit |
--provider |
Override provider (gemini, openai, flux) | |
--output |
-o |
Custom output path |
--no-display |
Skip terminal display | |
--no-clipboard |
Skip clipboard copy | |
--no-save |
Don't save to default location | |
--debug |
-d |
Show debug information |
Image Examples
# Generate
term-llm image "cyberpunk cityscape at night"
term-llm image "minimalist logo" --provider flux
term-llm image "futuristic city" --provider xai # uses Grok image model
term-llm image "watercolor painting" -o ./art.png
# Edit existing image (not supported by xAI)
term-llm image "add a hat" -i photo.png
term-llm image "make it look vintage" -i input.png --provider gemini
term-llm image "add sparkles" -i clipboard # edit from clipboard
# Options
term-llm image "portrait" --no-clipboard # don't copy to clipboard
term-llm image "landscape" --no-display # don't show in terminal
Image Providers
| Provider | Model | Environment Variable | Config Key |
|---|---|---|---|
| Gemini (default) | gemini-2.5-flash-image | GEMINI_API_KEY |
image.gemini.api_key |
| OpenAI | gpt-image-1 | OPENAI_API_KEY |
image.openai.api_key |
| xAI | grok-2-image-1212 | XAI_API_KEY |
image.xai.api_key |
| Flux | flux-2-pro / flux-kontext-pro | BFL_API_KEY |
image.flux.api_key |
Image providers use their own credentials, separate from text providers. This allows using different API keys or accounts for text vs image generation.
Note: xAI image generation does not support image editing (-i flag).
File Editing
Edit files using natural language instructions:
term-llm edit "add error handling" --file main.go
term-llm edit "refactor to use interfaces" --file "*.go"
term-llm edit "fix the bug" --file utils.go:45-60 # only lines 45-60
term-llm edit "use the API" -f main.go -c api/client.go # with context files
Edit Flags
| Flag | Short | Description |
|---|---|---|
--file |
-f |
File(s) to edit (required, supports globs) |
--context |
-c |
Read-only reference file(s) (supports globs, 'clipboard') |
--dry-run |
Preview changes without applying | |
--provider |
Override provider (e.g., openai:gpt-5.2-codex) |
|
--per-edit |
Prompt for each edit separately | |
--debug |
-d |
Show debug information |
Context Files
Use --context/-c to include reference files that inform the edit but won't be modified:
term-llm edit "refactor to use the client" -f handler.go -c api/client.go -c types.go
Context files are shown to the AI as read-only references. This is useful when your edit depends on types, interfaces, or patterns defined elsewhere.
You can also pipe stdin as context, which is handy for git diffs:
git diff | term-llm edit "apply these changes" -f main.go
git show HEAD~1 | term-llm edit "undo this change" -f handler.go
Line Range Syntax
Both edit and ask support line range syntax to focus on specific parts of a file:
# Edit specific lines
term-llm edit "fix this" --file main.go:11-22 # lines 11 to 22
term-llm edit "fix this" --file main.go:11- # line 11 to end
term-llm edit "fix this" --file main.go:-22 # start to line 22
# Ask about specific lines
term-llm ask -f main.go:50-100 "explain this function"
Diff Format
term-llm supports two edit strategies:
| Format | Description | Best For |
|---|---|---|
replace |
Multiple parallel find/replace tool calls | Most models (default) |
udiff |
Single unified diff with elision support | Codex models, large refactors |
The udiff format uses unified diff syntax with -... elision to efficiently replace large code blocks without listing every line:
--- file.go
+++ file.go
@@ func BigFunction @@
-func BigFunction() error {
-...
-}
+func BigFunction() error {
+ return newImpl()
+}
Configure in ~/.config/term-llm/config.yaml:
edit:
diff_format: auto # auto, udiff, or replace
auto(default): Usesudifffor Codex models,replacefor othersudiff: Always use unified diff formatreplace: Always use multiple find/replace calls
MCP Servers
MCP (Model Context Protocol) lets you extend term-llm with external tools—browser automation, database access, API integrations, and more.
# Add from registry
term-llm mcp add playwright # search and install
term-llm mcp add @anthropic/mcp-server-fetch
# Add from URL (HTTP transport)
term-llm mcp add https://developers.openai.com/mcp
# Use with any command
term-llm exec --mcp playwright "take a screenshot of google.com"
term-llm ask --mcp github "list my open PRs"
term-llm chat --mcp playwright,filesystem
MCP Commands
| Command | Description |
|---|---|
mcp add <name-or-url> |
Add server from registry or URL |
mcp list |
List configured servers |
mcp test <name> |
Test server connection |
mcp remove <name> |
Remove a server |
mcp browse [query] |
Browse/search the MCP registry |
mcp path |
Print config file path |
Adding Servers
From the registry (stdio transport):
term-llm mcp add playwright # search by name
term-llm mcp add @playwright/mcp # exact package
term-llm mcp browse # interactive browser
From a URL (HTTP transport):
term-llm mcp add https://developers.openai.com/mcp
term-llm mcp add https://mcp.example.com/api
Using MCP Tools
The --mcp flag works with all commands (ask, exec, edit, chat):
# Single server
term-llm ask --mcp fetch "summarize https://example.com"
term-llm exec --mcp playwright "take a screenshot of google.com"
term-llm edit --mcp github -f main.go "update based on latest API"
# Multiple servers (comma-separated)
term-llm chat --mcp playwright,filesystem,github
# In chat, toggle servers with Ctrl+M
Configuration
MCP servers are stored in ~/.config/term-llm/mcp.json:
{
"servers": {
"playwright": {
"command": "npx",
"args": ["-y", "@playwright/mcp"]
},
"openai-docs": {
"type": "http",
"url": "https://developers.openai.com/mcp"
},
"github": {
"command": "npx",
"args": ["-y", "@modelcontextprotocol/server-github"],
"env": {
"GITHUB_PERSONAL_ACCESS_TOKEN": "ghp_xxx"
}
},
"authenticated-api": {
"type": "http",
"url": "https://api.example.com/mcp",
"headers": {
"Authorization": "Bearer your-token"
}
}
}
}
Transport Types
| Type | Config | Description |
|---|---|---|
| stdio | command + args |
Runs as subprocess (npm/pypi packages) |
| http | url |
Connects to remote HTTP endpoint |
HTTP transport uses Streamable HTTP (MCP spec 2025-03-26).
Shell Integration (Recommended)
Commands run by term-llm don't appear in your shell history. To fix this, add a shell function that uses --print-only mode.
Zsh
Add to ~/.zshrc:
tl() {
local cmd=$(term-llm exec --print-only "$@")
if [[ -n "$cmd" ]]; then
print -s "$cmd" # add to history
eval "$cmd"
fi
}
Bash
Add to ~/.bashrc:
tl() {
local cmd=$(term-llm exec --print-only "$@")
if [[ -n "$cmd" ]]; then
history -s "$cmd" # add to history
eval "$cmd"
fi
}
Then use tl instead of term-llm:
tl "find large files"
tl "install latest docker" -s # with web search
tl "compress this folder" -a # auto-pick best
Configuration
term-llm config # Show current config
term-llm config edit # Edit config file
term-llm config path # Print config file path
Version & Updates
term-llm automatically checks for updates once per day and notifies you when a new version is available.
term-llm version # Show version info
term-llm upgrade # Upgrade to latest version
term-llm upgrade --version v0.2.0 # Install specific version
To disable update checks, set TERM_LLM_SKIP_UPDATE_CHECK=1.
Config is stored at ~/.config/term-llm/config.yaml:
default_provider: anthropic
providers:
# Built-in providers - type is inferred from the key name
anthropic:
model: claude-sonnet-4-5
openai:
model: gpt-5.2
credentials: codex # or "api_key" (default)
xai:
model: grok-4-1-fast # grok-4, grok-3, grok-code-fast-1
openrouter:
model: x-ai/grok-code-fast-1
app_url: https://github.com/samsaffron/term-llm
app_title: term-llm
gemini:
model: gemini-3-flash-preview # uses GEMINI_API_KEY
gemini-cli:
model: gemini-3-flash-preview # uses ~/.gemini/oauth_creds.json
zen:
model: glm-4.7-free
# api_key is optional - leave empty for free tier
# Local LLM providers (require explicit type)
# Run 'term-llm models --provider ollama' to list available models
# ollama:
# type: openai_compatible
# base_url: http://localhost:11434/v1
# model: llama3.2:latest
# Custom OpenAI-compatible endpoints
# cerebras:
# type: openai_compatible
# base_url: https://api.cerebras.ai/v1 # /chat/completions appended automatically
# # url: https://api.cerebras.ai/v1/chat/completions # alternative: full URL, used as-is
# model: llama-4-scout-17b
# api_key: ${CEREBRAS_API_KEY}
# models: # optional: enable autocomplete for --provider cerebras:<TAB>
# - llama-4-scout-17b-16e-instruct
# - llama-4-maverick-17b-128e-instruct
# - qwen-3-32b
exec:
suggestions: 3 # number of command suggestions
# provider: openai # override provider for exec only
# model: gpt-4o # override model for exec only
instructions: |
I use Arch Linux with zsh.
I prefer ripgrep over grep, fd over find.
ask:
# provider: anthropic
# model: claude-opus-4 # use a smarter model for questions
instructions: |
Be concise. I'm an experienced developer.
edit:
# provider: openai
# model: gpt-5.2-codex # Codex models are optimized for code edits
diff_format: auto # auto, udiff, or replace
image:
provider: gemini # gemini, openai, xai, or flux
output_dir: ~/Pictures/term-llm
gemini:
api_key: ${GEMINI_API_KEY}
# model: gemini-2.5-flash-image
openai:
api_key: ${OPENAI_API_KEY}
# model: gpt-image-1
xai:
api_key: ${XAI_API_KEY}
# model: grok-2-image-1212
flux:
api_key: ${BFL_API_KEY}
# model: flux-2-pro
search:
provider: duckduckgo # exa, brave, google, or duckduckgo (default)
# exa:
# api_key: ${EXA_API_KEY}
# brave:
# api_key: ${BRAVE_API_KEY}
# google:
# api_key: ${GOOGLE_SEARCH_API_KEY}
# cx: ${GOOGLE_SEARCH_CX}
Per-Command Provider/Model
Each command (exec, ask, edit) can have its own provider and model, overriding the global default:
default_provider: anthropic # global default
providers:
anthropic:
model: claude-sonnet-4-5
openai:
model: gpt-5.2
zen:
model: glm-4.7-free
exec:
provider: zen # exec uses Zen (free)
model: glm-4.7-free
ask:
model: claude-opus-4 # ask uses global provider with a smarter model
edit:
provider: openai
model: gpt-4o # edit uses OpenAI
Precedence (highest to lowest):
- CLI flag:
--provider openai:gpt-4o - Per-command config:
exec.provider/exec.model - Global config:
default_provider+providers.<name>.model
Reasoning Effort (OpenAI)
For OpenAI models, you can control reasoning effort by appending -low, -medium, -high, or -xhigh to the model name:
term-llm ask --provider openai:gpt-5.2-xhigh "complex question" # max reasoning
term-llm exec --provider openai:gpt-5.2-low "quick task" # faster/cheaper
Or in config:
providers:
openai:
model: gpt-5.2-high # effort parsed from suffix
| Effort | Description |
|---|---|
low |
Faster, cheaper, less thorough |
medium |
Balanced (default if not specified) |
high |
More thorough reasoning |
xhigh |
Maximum reasoning (only on gpt-5.2) |
Extended Thinking (Anthropic)
For Anthropic models, you can enable extended thinking by appending -thinking to the model name:
term-llm ask --provider anthropic:claude-sonnet-4-5-thinking "complex question"
Or in config:
providers:
anthropic:
model: claude-sonnet-4-5-thinking # enables 10k token thinking budget
Extended thinking allows Claude to reason through complex problems before responding. The thinking process uses ~10,000 tokens and is not shown in the output.
Web Search
When using -s/--search, some providers (Anthropic, OpenAI, xAI, Gemini) have native web search built-in. xAI also includes X (Twitter) search. Others use external tools (configurable search provider + Jina Reader).
You can force external search even for providers with native support—useful for consistency, debugging, or when native search doesn't work well for your use case.
CLI flags:
term-llm ask "latest news" -s --no-native-search # Force external search tools
term-llm ask "latest news" -s --native-search # Force native (override config)
Global config (applies to all providers):
search:
force_external: true # Never use native search, always use external tools
Per-provider config:
providers:
gemini:
model: gemini-2.5-flash
use_native_search: false # Always use external search for this provider
anthropic:
model: claude-sonnet-4-5
# use_native_search: true # Default: use native if available
Priority (highest to lowest):
- CLI flag:
--native-searchor--no-native-search - Global config:
search.force_external: true - Provider config:
use_native_search: false - Default: use native search if provider supports it
Search Providers
When using external search (non-native), you can choose from multiple search providers:
| Provider | Environment Variable | Description |
|---|---|---|
| DuckDuckGo (default) | — | Free, no API key required |
| Exa | EXA_API_KEY |
AI-native semantic search |
| Brave | BRAVE_API_KEY |
Independent index, privacy-focused |
GOOGLE_SEARCH_API_KEY + GOOGLE_SEARCH_CX |
Google Custom Search |
Configure in ~/.config/term-llm/config.yaml:
search:
provider: exa # exa, brave, google, or duckduckgo (default)
exa:
api_key: ${EXA_API_KEY}
brave:
api_key: ${BRAVE_API_KEY}
google:
api_key: ${GOOGLE_SEARCH_API_KEY}
cx: ${GOOGLE_SEARCH_CX} # Custom Search Engine ID
Run term-llm config to see which search providers have credentials configured.
Credentials
Most providers use API keys via environment variables. Some providers use OAuth credentials from companion CLIs:
| Provider | Credentials Source | Description |
|---|---|---|
anthropic |
ANTHROPIC_API_KEY |
Anthropic API key |
openai |
OPENAI_API_KEY |
OpenAI API key |
gemini |
GEMINI_API_KEY |
Google AI Studio API key |
gemini-cli |
~/.gemini/oauth_creds.json |
gemini-cli OAuth (Google Code Assist) |
codex |
~/.codex/auth.json |
Codex CLI OAuth |
xai |
XAI_API_KEY |
xAI API key |
openrouter |
OPENROUTER_API_KEY |
OpenRouter API key |
zen |
ZEN_API_KEY (optional) |
Empty for free tier |
Codex and Gemini CLI work without any configuration if you have the respective CLI tools installed and logged in:
term-llm ask --provider codex "question" # uses ~/.codex/auth.json
term-llm ask --provider gemini-cli "question" # uses ~/.gemini/oauth_creds.json
Dynamic Configuration
For advanced setups, term-llm supports dynamic resolution of API keys and URLs using special prefixes. These are resolved lazily—only when actually making an API call, not when loading config.
1Password Integration (op://)
Retrieve API keys from 1Password using secret references:
providers:
my-provider:
type: openai_compatible
base_url: https://api.example.com/v1
api_key: "op://Private/My API Key/credential"
For multiple 1Password accounts, use the ?account= query parameter:
providers:
work-llm:
type: openai_compatible
base_url: https://llm.company.com/v1
api_key: "op://Engineering/LLM Service/api_key?account=company.1password.com"
This requires the 1Password CLI (op) to be installed and signed in.
DNS SRV Records (srv://)
Discover server endpoints dynamically via DNS SRV records:
providers:
internal-llm:
type: openai_compatible
url: "srv://_llm._tcp.internal.company.com/v1/chat/completions"
api_key: ${LLM_API_KEY}
The SRV record is resolved to https://host:port/path. This is useful for:
- Load-balanced services with multiple backends
- Internal services with dynamic IPs
- Kubernetes services exposed via external-dns
Shell Commands ($())
Execute arbitrary shell commands to get values:
providers:
vault-backed:
type: openai_compatible
base_url: https://api.example.com/v1
api_key: "$(vault kv get -field=api_key secret/llm)"
aws-secrets:
type: openai_compatible
base_url: https://api.example.com/v1
api_key: "$(aws secretsmanager get-secret-value --secret-id llm-key --query SecretString --output text)"
Combined Example
Using SRV discovery with 1Password credentials:
providers:
production-llm:
type: openai_compatible
model: "Qwen/Qwen3-30B-A3B"
url: "srv://_vllm._tcp.ml.company.com/v1/chat/completions"
api_key: "op://Infrastructure/vLLM Cluster/credential?account=company.1password.com"
When you run term-llm config, these show as [set via 1password] or [set via command] without actually resolving the values (no 1Password prompt until you make an API call).
Diagnostics
Enable diagnostic logging to capture detailed information when edits fail and retry. This is useful for debugging and tuning prompts:
diagnostics:
enabled: true
# dir: /custom/path # optional, defaults to ~/.local/share/term-llm/diagnostics/
When an edit fails and retries, two files are written:
edit-retry-{timestamp}.json- Structured data for programmatic analysisedit-retry-{timestamp}.md- Human-readable with syntax-highlighted code blocks
Each diagnostic captures:
- Provider and model used
- Full system and user prompts
- LLM's partial response before failure
- Failed search pattern or diff
- Current file content
- Error reason
Shell Completions
Generate and install shell completions:
term-llm config completion zsh --install # Install for zsh
term-llm config completion bash --install # Install for bash
term-llm config completion fish --install # Install for fish
License
MIT
Documentation
¶
There is no documentation for this package.
Directories
¶
| Path | Synopsis |
|---|---|
|
udiff
Package udiff provides parsing and application of unified diffs with elision support.
|
Package udiff provides parsing and application of unified diffs with elision support. |
|
internal
|
|
|
edit
Package edit provides streaming edit parsing and application.
|
Package edit provides streaming edit parsing and application. |
|
tools
Package tools provides a permission-aware local tool system for term-llm.
|
Package tools provides a permission-aware local tool system for term-llm. |