Documentation
¶
Overview ¶
Package proto is a generated protocol buffer package.
It is generated from these files:
tensorflow/contrib/boosted_trees/proto/learner.proto tensorflow/contrib/boosted_trees/proto/quantiles.proto tensorflow/contrib/boosted_trees/proto/tree_config.proto
It has these top-level messages:
TreeRegularizationConfig TreeConstraintsConfig LearningRateConfig LearningRateFixedConfig LearningRateLineSearchConfig AveragingConfig LearningRateDropoutDrivenConfig LearnerConfig QuantileConfig QuantileEntry QuantileSummaryState QuantileStreamState TreeNode TreeNodeMetadata Leaf Vector SparseVector DenseFloatBinarySplit SparseFloatBinarySplitDefaultLeft SparseFloatBinarySplitDefaultRight CategoricalIdBinarySplit CategoricalIdSetMembershipBinarySplit DecisionTreeConfig DecisionTreeMetadata GrowingMetadata DecisionTreeEnsembleConfig
Index ¶
- Variables
- type AveragingConfig
- func (*AveragingConfig) Descriptor() ([]byte, []int)
- func (m *AveragingConfig) GetAverageLastNTrees() float32
- func (m *AveragingConfig) GetAverageLastPercentTrees() float32
- func (m *AveragingConfig) GetConfig() isAveragingConfig_Config
- func (*AveragingConfig) ProtoMessage()
- func (m *AveragingConfig) Reset()
- func (m *AveragingConfig) String() string
- func (*AveragingConfig) XXX_OneofFuncs() (func(msg proto1.Message, b *proto1.Buffer) error, ...)
- type AveragingConfig_AverageLastNTrees
- type AveragingConfig_AverageLastPercentTrees
- type CategoricalIdBinarySplit
- func (*CategoricalIdBinarySplit) Descriptor() ([]byte, []int)
- func (m *CategoricalIdBinarySplit) GetFeatureColumn() int32
- func (m *CategoricalIdBinarySplit) GetFeatureId() int64
- func (m *CategoricalIdBinarySplit) GetLeftId() int32
- func (m *CategoricalIdBinarySplit) GetRightId() int32
- func (*CategoricalIdBinarySplit) ProtoMessage()
- func (m *CategoricalIdBinarySplit) Reset()
- func (m *CategoricalIdBinarySplit) String() string
- type CategoricalIdSetMembershipBinarySplit
- func (*CategoricalIdSetMembershipBinarySplit) Descriptor() ([]byte, []int)
- func (m *CategoricalIdSetMembershipBinarySplit) GetFeatureColumn() int32
- func (m *CategoricalIdSetMembershipBinarySplit) GetFeatureIds() []int64
- func (m *CategoricalIdSetMembershipBinarySplit) GetLeftId() int32
- func (m *CategoricalIdSetMembershipBinarySplit) GetRightId() int32
- func (*CategoricalIdSetMembershipBinarySplit) ProtoMessage()
- func (m *CategoricalIdSetMembershipBinarySplit) Reset()
- func (m *CategoricalIdSetMembershipBinarySplit) String() string
- type DecisionTreeConfig
- type DecisionTreeEnsembleConfig
- func (*DecisionTreeEnsembleConfig) Descriptor() ([]byte, []int)
- func (m *DecisionTreeEnsembleConfig) GetGrowingMetadata() *GrowingMetadata
- func (m *DecisionTreeEnsembleConfig) GetTreeMetadata() []*DecisionTreeMetadata
- func (m *DecisionTreeEnsembleConfig) GetTreeWeights() []float32
- func (m *DecisionTreeEnsembleConfig) GetTrees() []*DecisionTreeConfig
- func (*DecisionTreeEnsembleConfig) ProtoMessage()
- func (m *DecisionTreeEnsembleConfig) Reset()
- func (m *DecisionTreeEnsembleConfig) String() string
- type DecisionTreeMetadata
- func (*DecisionTreeMetadata) Descriptor() ([]byte, []int)
- func (m *DecisionTreeMetadata) GetIsFinalized() bool
- func (m *DecisionTreeMetadata) GetNumLayersGrown() int32
- func (m *DecisionTreeMetadata) GetNumTreeWeightUpdates() int32
- func (*DecisionTreeMetadata) ProtoMessage()
- func (m *DecisionTreeMetadata) Reset()
- func (m *DecisionTreeMetadata) String() string
- type DenseFloatBinarySplit
- func (*DenseFloatBinarySplit) Descriptor() ([]byte, []int)
- func (m *DenseFloatBinarySplit) GetFeatureColumn() int32
- func (m *DenseFloatBinarySplit) GetLeftId() int32
- func (m *DenseFloatBinarySplit) GetRightId() int32
- func (m *DenseFloatBinarySplit) GetThreshold() float32
- func (*DenseFloatBinarySplit) ProtoMessage()
- func (m *DenseFloatBinarySplit) Reset()
- func (m *DenseFloatBinarySplit) String() string
- type GrowingMetadata
- type Leaf
- func (*Leaf) Descriptor() ([]byte, []int)
- func (m *Leaf) GetLeaf() isLeaf_Leaf
- func (m *Leaf) GetSparseVector() *SparseVector
- func (m *Leaf) GetVector() *Vector
- func (*Leaf) ProtoMessage()
- func (m *Leaf) Reset()
- func (m *Leaf) String() string
- func (*Leaf) XXX_OneofFuncs() (func(msg proto1.Message, b *proto1.Buffer) error, ...)
- type Leaf_SparseVector
- type Leaf_Vector
- type LearnerConfig
- func (*LearnerConfig) Descriptor() ([]byte, []int)
- func (m *LearnerConfig) GetAveragingConfig() *AveragingConfig
- func (m *LearnerConfig) GetConstraints() *TreeConstraintsConfig
- func (m *LearnerConfig) GetFeatureFraction() isLearnerConfig_FeatureFraction
- func (m *LearnerConfig) GetFeatureFractionPerLevel() float32
- func (m *LearnerConfig) GetFeatureFractionPerTree() float32
- func (m *LearnerConfig) GetGrowingMode() LearnerConfig_GrowingMode
- func (m *LearnerConfig) GetLearningRateTuner() *LearningRateConfig
- func (m *LearnerConfig) GetMultiClassStrategy() LearnerConfig_MultiClassStrategy
- func (m *LearnerConfig) GetNumClasses() uint32
- func (m *LearnerConfig) GetPruningMode() LearnerConfig_PruningMode
- func (m *LearnerConfig) GetRegularization() *TreeRegularizationConfig
- func (*LearnerConfig) ProtoMessage()
- func (m *LearnerConfig) Reset()
- func (m *LearnerConfig) String() string
- func (*LearnerConfig) XXX_OneofFuncs() (func(msg proto1.Message, b *proto1.Buffer) error, ...)
- type LearnerConfig_FeatureFractionPerLevel
- type LearnerConfig_FeatureFractionPerTree
- type LearnerConfig_GrowingMode
- type LearnerConfig_MultiClassStrategy
- type LearnerConfig_PruningMode
- type LearningRateConfig
- func (*LearningRateConfig) Descriptor() ([]byte, []int)
- func (m *LearningRateConfig) GetDropout() *LearningRateDropoutDrivenConfig
- func (m *LearningRateConfig) GetFixed() *LearningRateFixedConfig
- func (m *LearningRateConfig) GetLineSearch() *LearningRateLineSearchConfig
- func (m *LearningRateConfig) GetTuner() isLearningRateConfig_Tuner
- func (*LearningRateConfig) ProtoMessage()
- func (m *LearningRateConfig) Reset()
- func (m *LearningRateConfig) String() string
- func (*LearningRateConfig) XXX_OneofFuncs() (func(msg proto1.Message, b *proto1.Buffer) error, ...)
- type LearningRateConfig_Dropout
- type LearningRateConfig_Fixed
- type LearningRateConfig_LineSearch
- type LearningRateDropoutDrivenConfig
- func (*LearningRateDropoutDrivenConfig) Descriptor() ([]byte, []int)
- func (m *LearningRateDropoutDrivenConfig) GetDropoutProbability() float32
- func (m *LearningRateDropoutDrivenConfig) GetLearningRate() float32
- func (m *LearningRateDropoutDrivenConfig) GetProbabilityOfSkippingDropout() float32
- func (*LearningRateDropoutDrivenConfig) ProtoMessage()
- func (m *LearningRateDropoutDrivenConfig) Reset()
- func (m *LearningRateDropoutDrivenConfig) String() string
- type LearningRateFixedConfig
- type LearningRateLineSearchConfig
- func (*LearningRateLineSearchConfig) Descriptor() ([]byte, []int)
- func (m *LearningRateLineSearchConfig) GetMaxLearningRate() float32
- func (m *LearningRateLineSearchConfig) GetNumSteps() int32
- func (*LearningRateLineSearchConfig) ProtoMessage()
- func (m *LearningRateLineSearchConfig) Reset()
- func (m *LearningRateLineSearchConfig) String() string
- type QuantileConfig
- type QuantileEntry
- func (*QuantileEntry) Descriptor() ([]byte, []int)
- func (m *QuantileEntry) GetMaxRank() float32
- func (m *QuantileEntry) GetMinRank() float32
- func (m *QuantileEntry) GetValue() float32
- func (m *QuantileEntry) GetWeight() float32
- func (*QuantileEntry) ProtoMessage()
- func (m *QuantileEntry) Reset()
- func (m *QuantileEntry) String() string
- type QuantileStreamState
- type QuantileSummaryState
- type SparseFloatBinarySplitDefaultLeft
- func (*SparseFloatBinarySplitDefaultLeft) Descriptor() ([]byte, []int)
- func (m *SparseFloatBinarySplitDefaultLeft) GetSplit() *DenseFloatBinarySplit
- func (*SparseFloatBinarySplitDefaultLeft) ProtoMessage()
- func (m *SparseFloatBinarySplitDefaultLeft) Reset()
- func (m *SparseFloatBinarySplitDefaultLeft) String() string
- type SparseFloatBinarySplitDefaultRight
- func (*SparseFloatBinarySplitDefaultRight) Descriptor() ([]byte, []int)
- func (m *SparseFloatBinarySplitDefaultRight) GetSplit() *DenseFloatBinarySplit
- func (*SparseFloatBinarySplitDefaultRight) ProtoMessage()
- func (m *SparseFloatBinarySplitDefaultRight) Reset()
- func (m *SparseFloatBinarySplitDefaultRight) String() string
- type SparseVector
- type TreeConstraintsConfig
- func (*TreeConstraintsConfig) Descriptor() ([]byte, []int)
- func (m *TreeConstraintsConfig) GetMaxTreeDepth() uint32
- func (m *TreeConstraintsConfig) GetMinNodeWeight() float32
- func (*TreeConstraintsConfig) ProtoMessage()
- func (m *TreeConstraintsConfig) Reset()
- func (m *TreeConstraintsConfig) String() string
- type TreeNode
- func (*TreeNode) Descriptor() ([]byte, []int)
- func (m *TreeNode) GetCategoricalIdBinarySplit() *CategoricalIdBinarySplit
- func (m *TreeNode) GetCategoricalIdSetMembershipBinarySplit() *CategoricalIdSetMembershipBinarySplit
- func (m *TreeNode) GetDenseFloatBinarySplit() *DenseFloatBinarySplit
- func (m *TreeNode) GetLeaf() *Leaf
- func (m *TreeNode) GetNode() isTreeNode_Node
- func (m *TreeNode) GetNodeMetadata() *TreeNodeMetadata
- func (m *TreeNode) GetSparseFloatBinarySplitDefaultLeft() *SparseFloatBinarySplitDefaultLeft
- func (m *TreeNode) GetSparseFloatBinarySplitDefaultRight() *SparseFloatBinarySplitDefaultRight
- func (*TreeNode) ProtoMessage()
- func (m *TreeNode) Reset()
- func (m *TreeNode) String() string
- func (*TreeNode) XXX_OneofFuncs() (func(msg proto1.Message, b *proto1.Buffer) error, ...)
- type TreeNodeMetadata
- type TreeNode_CategoricalIdBinarySplit
- type TreeNode_CategoricalIdSetMembershipBinarySplit
- type TreeNode_DenseFloatBinarySplit
- type TreeNode_Leaf
- type TreeNode_SparseFloatBinarySplitDefaultLeft
- type TreeNode_SparseFloatBinarySplitDefaultRight
- type TreeRegularizationConfig
- func (*TreeRegularizationConfig) Descriptor() ([]byte, []int)
- func (m *TreeRegularizationConfig) GetL1() float32
- func (m *TreeRegularizationConfig) GetL2() float32
- func (m *TreeRegularizationConfig) GetTreeComplexity() float32
- func (*TreeRegularizationConfig) ProtoMessage()
- func (m *TreeRegularizationConfig) Reset()
- func (m *TreeRegularizationConfig) String() string
- type Vector
Constants ¶
This section is empty.
Variables ¶
var LearnerConfig_GrowingMode_name = map[int32]string{
0: "WHOLE_TREE",
1: "LAYER_BY_LAYER",
}
var LearnerConfig_GrowingMode_value = map[string]int32{
"WHOLE_TREE": 0,
"LAYER_BY_LAYER": 1,
}
var LearnerConfig_MultiClassStrategy_name = map[int32]string{
0: "TREE_PER_CLASS",
1: "FULL_HESSIAN",
2: "DIAGONAL_HESSIAN",
}
var LearnerConfig_MultiClassStrategy_value = map[string]int32{
"TREE_PER_CLASS": 0,
"FULL_HESSIAN": 1,
"DIAGONAL_HESSIAN": 2,
}
var LearnerConfig_PruningMode_name = map[int32]string{
0: "PRE_PRUNE",
1: "POST_PRUNE",
}
var LearnerConfig_PruningMode_value = map[string]int32{
"PRE_PRUNE": 0,
"POST_PRUNE": 1,
}
Functions ¶
This section is empty.
Types ¶
type AveragingConfig ¶
type AveragingConfig struct { // Types that are valid to be assigned to Config: // *AveragingConfig_AverageLastNTrees // *AveragingConfig_AverageLastPercentTrees Config isAveragingConfig_Config `protobuf_oneof:"config"` }
When we have a sequence of trees 1, 2, 3 ... n, these essentially represent weights updates in functional space, and thus we can use averaging of weight updates to achieve better performance. For example, we can say that our final ensemble will be an average of ensembles of tree 1, and ensemble of tree 1 and tree 2 etc .. ensemble of all trees. Note that this averaging will apply ONLY DURING PREDICTION. The training stays the same.
func (*AveragingConfig) Descriptor ¶
func (*AveragingConfig) Descriptor() ([]byte, []int)
func (*AveragingConfig) GetAverageLastNTrees ¶
func (m *AveragingConfig) GetAverageLastNTrees() float32
func (*AveragingConfig) GetAverageLastPercentTrees ¶
func (m *AveragingConfig) GetAverageLastPercentTrees() float32
func (*AveragingConfig) GetConfig ¶
func (m *AveragingConfig) GetConfig() isAveragingConfig_Config
func (*AveragingConfig) ProtoMessage ¶
func (*AveragingConfig) ProtoMessage()
func (*AveragingConfig) Reset ¶
func (m *AveragingConfig) Reset()
func (*AveragingConfig) String ¶
func (m *AveragingConfig) String() string
func (*AveragingConfig) XXX_OneofFuncs ¶
func (*AveragingConfig) XXX_OneofFuncs() (func(msg proto1.Message, b *proto1.Buffer) error, func(msg proto1.Message, tag, wire int, b *proto1.Buffer) (bool, error), func(msg proto1.Message) (n int), []interface{})
XXX_OneofFuncs is for the internal use of the proto package.
type AveragingConfig_AverageLastNTrees ¶
type AveragingConfig_AverageLastNTrees struct {
AverageLastNTrees float32 `protobuf:"fixed32,1,opt,name=average_last_n_trees,json=averageLastNTrees,oneof"`
}
type AveragingConfig_AverageLastPercentTrees ¶
type AveragingConfig_AverageLastPercentTrees struct {
AverageLastPercentTrees float32 `protobuf:"fixed32,2,opt,name=average_last_percent_trees,json=averageLastPercentTrees,oneof"`
}
type CategoricalIdBinarySplit ¶
type CategoricalIdBinarySplit struct { // Categorical feature column and Id describing // the rule feature == Id. FeatureColumn int32 `protobuf:"varint,1,opt,name=feature_column,json=featureColumn" json:"feature_column,omitempty"` FeatureId int64 `protobuf:"varint,2,opt,name=feature_id,json=featureId" json:"feature_id,omitempty"` // Node children indexing into a contiguous // vector of nodes starting from the root. LeftId int32 `protobuf:"varint,3,opt,name=left_id,json=leftId" json:"left_id,omitempty"` RightId int32 `protobuf:"varint,4,opt,name=right_id,json=rightId" json:"right_id,omitempty"` }
Split rule for categorical features with a single feature Id.
func (*CategoricalIdBinarySplit) Descriptor ¶
func (*CategoricalIdBinarySplit) Descriptor() ([]byte, []int)
func (*CategoricalIdBinarySplit) GetFeatureColumn ¶
func (m *CategoricalIdBinarySplit) GetFeatureColumn() int32
func (*CategoricalIdBinarySplit) GetFeatureId ¶
func (m *CategoricalIdBinarySplit) GetFeatureId() int64
func (*CategoricalIdBinarySplit) GetLeftId ¶
func (m *CategoricalIdBinarySplit) GetLeftId() int32
func (*CategoricalIdBinarySplit) GetRightId ¶
func (m *CategoricalIdBinarySplit) GetRightId() int32
func (*CategoricalIdBinarySplit) ProtoMessage ¶
func (*CategoricalIdBinarySplit) ProtoMessage()
func (*CategoricalIdBinarySplit) Reset ¶
func (m *CategoricalIdBinarySplit) Reset()
func (*CategoricalIdBinarySplit) String ¶
func (m *CategoricalIdBinarySplit) String() string
type CategoricalIdSetMembershipBinarySplit ¶
type CategoricalIdSetMembershipBinarySplit struct { // Categorical feature column and Id describing // the rule feature ∈ feature_ids. FeatureColumn int32 `protobuf:"varint,1,opt,name=feature_column,json=featureColumn" json:"feature_column,omitempty"` // Sorted list of Ids in the set. FeatureIds []int64 `protobuf:"varint,2,rep,packed,name=feature_ids,json=featureIds" json:"feature_ids,omitempty"` // Node children indexing into a contiguous // vector of nodes starting from the root. LeftId int32 `protobuf:"varint,3,opt,name=left_id,json=leftId" json:"left_id,omitempty"` RightId int32 `protobuf:"varint,4,opt,name=right_id,json=rightId" json:"right_id,omitempty"` }
Split rule for categorical features with a set of feature Ids.
func (*CategoricalIdSetMembershipBinarySplit) Descriptor ¶
func (*CategoricalIdSetMembershipBinarySplit) Descriptor() ([]byte, []int)
func (*CategoricalIdSetMembershipBinarySplit) GetFeatureColumn ¶
func (m *CategoricalIdSetMembershipBinarySplit) GetFeatureColumn() int32
func (*CategoricalIdSetMembershipBinarySplit) GetFeatureIds ¶
func (m *CategoricalIdSetMembershipBinarySplit) GetFeatureIds() []int64
func (*CategoricalIdSetMembershipBinarySplit) GetLeftId ¶
func (m *CategoricalIdSetMembershipBinarySplit) GetLeftId() int32
func (*CategoricalIdSetMembershipBinarySplit) GetRightId ¶
func (m *CategoricalIdSetMembershipBinarySplit) GetRightId() int32
func (*CategoricalIdSetMembershipBinarySplit) ProtoMessage ¶
func (*CategoricalIdSetMembershipBinarySplit) ProtoMessage()
func (*CategoricalIdSetMembershipBinarySplit) Reset ¶
func (m *CategoricalIdSetMembershipBinarySplit) Reset()
func (*CategoricalIdSetMembershipBinarySplit) String ¶
func (m *CategoricalIdSetMembershipBinarySplit) String() string
type DecisionTreeConfig ¶
type DecisionTreeConfig struct {
Nodes []*TreeNode `protobuf:"bytes,1,rep,name=nodes" json:"nodes,omitempty"`
}
DecisionTreeConfig describes a list of connected nodes. Node 0 must be the root and can carry any payload including a leaf in the case of representing the bias. Note that each node id is implicitly its index in the list of nodes.
func (*DecisionTreeConfig) Descriptor ¶
func (*DecisionTreeConfig) Descriptor() ([]byte, []int)
func (*DecisionTreeConfig) GetNodes ¶
func (m *DecisionTreeConfig) GetNodes() []*TreeNode
func (*DecisionTreeConfig) ProtoMessage ¶
func (*DecisionTreeConfig) ProtoMessage()
func (*DecisionTreeConfig) Reset ¶
func (m *DecisionTreeConfig) Reset()
func (*DecisionTreeConfig) String ¶
func (m *DecisionTreeConfig) String() string
type DecisionTreeEnsembleConfig ¶
type DecisionTreeEnsembleConfig struct { Trees []*DecisionTreeConfig `protobuf:"bytes,1,rep,name=trees" json:"trees,omitempty"` TreeWeights []float32 `protobuf:"fixed32,2,rep,packed,name=tree_weights,json=treeWeights" json:"tree_weights,omitempty"` TreeMetadata []*DecisionTreeMetadata `protobuf:"bytes,3,rep,name=tree_metadata,json=treeMetadata" json:"tree_metadata,omitempty"` // Metadata that is used during the training. GrowingMetadata *GrowingMetadata `protobuf:"bytes,4,opt,name=growing_metadata,json=growingMetadata" json:"growing_metadata,omitempty"` }
DecisionTreeEnsembleConfig describes an ensemble of decision trees.
func (*DecisionTreeEnsembleConfig) Descriptor ¶
func (*DecisionTreeEnsembleConfig) Descriptor() ([]byte, []int)
func (*DecisionTreeEnsembleConfig) GetGrowingMetadata ¶
func (m *DecisionTreeEnsembleConfig) GetGrowingMetadata() *GrowingMetadata
func (*DecisionTreeEnsembleConfig) GetTreeMetadata ¶
func (m *DecisionTreeEnsembleConfig) GetTreeMetadata() []*DecisionTreeMetadata
func (*DecisionTreeEnsembleConfig) GetTreeWeights ¶
func (m *DecisionTreeEnsembleConfig) GetTreeWeights() []float32
func (*DecisionTreeEnsembleConfig) GetTrees ¶
func (m *DecisionTreeEnsembleConfig) GetTrees() []*DecisionTreeConfig
func (*DecisionTreeEnsembleConfig) ProtoMessage ¶
func (*DecisionTreeEnsembleConfig) ProtoMessage()
func (*DecisionTreeEnsembleConfig) Reset ¶
func (m *DecisionTreeEnsembleConfig) Reset()
func (*DecisionTreeEnsembleConfig) String ¶
func (m *DecisionTreeEnsembleConfig) String() string
type DecisionTreeMetadata ¶
type DecisionTreeMetadata struct { // How many times tree weight was updated (due to reweighting of the final // ensemble, dropout, shrinkage etc). NumTreeWeightUpdates int32 `protobuf:"varint,1,opt,name=num_tree_weight_updates,json=numTreeWeightUpdates" json:"num_tree_weight_updates,omitempty"` // Number of layers grown for this tree. NumLayersGrown int32 `protobuf:"varint,2,opt,name=num_layers_grown,json=numLayersGrown" json:"num_layers_grown,omitempty"` // Whether the tree is finalized in that no more layers can be grown. IsFinalized bool `protobuf:"varint,3,opt,name=is_finalized,json=isFinalized" json:"is_finalized,omitempty"` }
func (*DecisionTreeMetadata) Descriptor ¶
func (*DecisionTreeMetadata) Descriptor() ([]byte, []int)
func (*DecisionTreeMetadata) GetIsFinalized ¶
func (m *DecisionTreeMetadata) GetIsFinalized() bool
func (*DecisionTreeMetadata) GetNumLayersGrown ¶
func (m *DecisionTreeMetadata) GetNumLayersGrown() int32
func (*DecisionTreeMetadata) GetNumTreeWeightUpdates ¶
func (m *DecisionTreeMetadata) GetNumTreeWeightUpdates() int32
func (*DecisionTreeMetadata) ProtoMessage ¶
func (*DecisionTreeMetadata) ProtoMessage()
func (*DecisionTreeMetadata) Reset ¶
func (m *DecisionTreeMetadata) Reset()
func (*DecisionTreeMetadata) String ¶
func (m *DecisionTreeMetadata) String() string
type DenseFloatBinarySplit ¶
type DenseFloatBinarySplit struct { // Float feature column and split threshold describing // the rule feature <= threshold. FeatureColumn int32 `protobuf:"varint,1,opt,name=feature_column,json=featureColumn" json:"feature_column,omitempty"` Threshold float32 `protobuf:"fixed32,2,opt,name=threshold" json:"threshold,omitempty"` // Node children indexing into a contiguous // vector of nodes starting from the root. LeftId int32 `protobuf:"varint,3,opt,name=left_id,json=leftId" json:"left_id,omitempty"` RightId int32 `protobuf:"varint,4,opt,name=right_id,json=rightId" json:"right_id,omitempty"` }
Split rule for dense float features.
func (*DenseFloatBinarySplit) Descriptor ¶
func (*DenseFloatBinarySplit) Descriptor() ([]byte, []int)
func (*DenseFloatBinarySplit) GetFeatureColumn ¶
func (m *DenseFloatBinarySplit) GetFeatureColumn() int32
func (*DenseFloatBinarySplit) GetLeftId ¶
func (m *DenseFloatBinarySplit) GetLeftId() int32
func (*DenseFloatBinarySplit) GetRightId ¶
func (m *DenseFloatBinarySplit) GetRightId() int32
func (*DenseFloatBinarySplit) GetThreshold ¶
func (m *DenseFloatBinarySplit) GetThreshold() float32
func (*DenseFloatBinarySplit) ProtoMessage ¶
func (*DenseFloatBinarySplit) ProtoMessage()
func (*DenseFloatBinarySplit) Reset ¶
func (m *DenseFloatBinarySplit) Reset()
func (*DenseFloatBinarySplit) String ¶
func (m *DenseFloatBinarySplit) String() string
type GrowingMetadata ¶
type GrowingMetadata struct { // Number of trees that we have attempted to build. After pruning, these // trees might have been removed. NumTreesAttempted int64 `protobuf:"varint,1,opt,name=num_trees_attempted,json=numTreesAttempted" json:"num_trees_attempted,omitempty"` // Number of layers that we have attempted to build. After pruning, these // layers might have been removed. NumLayersAttempted int64 `protobuf:"varint,2,opt,name=num_layers_attempted,json=numLayersAttempted" json:"num_layers_attempted,omitempty"` }
func (*GrowingMetadata) Descriptor ¶
func (*GrowingMetadata) Descriptor() ([]byte, []int)
func (*GrowingMetadata) GetNumLayersAttempted ¶
func (m *GrowingMetadata) GetNumLayersAttempted() int64
func (*GrowingMetadata) GetNumTreesAttempted ¶
func (m *GrowingMetadata) GetNumTreesAttempted() int64
func (*GrowingMetadata) ProtoMessage ¶
func (*GrowingMetadata) ProtoMessage()
func (*GrowingMetadata) Reset ¶
func (m *GrowingMetadata) Reset()
func (*GrowingMetadata) String ¶
func (m *GrowingMetadata) String() string
type Leaf ¶
type Leaf struct { // Types that are valid to be assigned to Leaf: // *Leaf_Vector // *Leaf_SparseVector Leaf isLeaf_Leaf `protobuf_oneof:"leaf"` }
Leaves can either hold dense or sparse information.
func (*Leaf) Descriptor ¶
func (*Leaf) GetSparseVector ¶
func (m *Leaf) GetSparseVector() *SparseVector
func (*Leaf) ProtoMessage ¶
func (*Leaf) ProtoMessage()
type Leaf_SparseVector ¶
type Leaf_SparseVector struct {
SparseVector *SparseVector `protobuf:"bytes,2,opt,name=sparse_vector,json=sparseVector,oneof"`
}
type Leaf_Vector ¶
type Leaf_Vector struct {
Vector *Vector `protobuf:"bytes,1,opt,name=vector,oneof"`
}
type LearnerConfig ¶
type LearnerConfig struct { // Number of classes. NumClasses uint32 `protobuf:"varint,1,opt,name=num_classes,json=numClasses" json:"num_classes,omitempty"` // Fraction of features to consider in each tree sampled randomly // from all available features. // // Types that are valid to be assigned to FeatureFraction: // *LearnerConfig_FeatureFractionPerTree // *LearnerConfig_FeatureFractionPerLevel FeatureFraction isLearnerConfig_FeatureFraction `protobuf_oneof:"feature_fraction"` // Regularization. Regularization *TreeRegularizationConfig `protobuf:"bytes,4,opt,name=regularization" json:"regularization,omitempty"` // Constraints. Constraints *TreeConstraintsConfig `protobuf:"bytes,5,opt,name=constraints" json:"constraints,omitempty"` // Pruning. PruningMode LearnerConfig_PruningMode `` /* 152-byte string literal not displayed */ // Growing Mode. GrowingMode LearnerConfig_GrowingMode `` /* 152-byte string literal not displayed */ // Learning rate. LearningRateTuner *LearningRateConfig `protobuf:"bytes,6,opt,name=learning_rate_tuner,json=learningRateTuner" json:"learning_rate_tuner,omitempty"` // Multi-class strategy. MultiClassStrategy LearnerConfig_MultiClassStrategy `` /* 183-byte string literal not displayed */ // If you want to average the ensembles (for regularization), provide the // config below. AveragingConfig *AveragingConfig `protobuf:"bytes,11,opt,name=averaging_config,json=averagingConfig" json:"averaging_config,omitempty"` }
func (*LearnerConfig) Descriptor ¶
func (*LearnerConfig) Descriptor() ([]byte, []int)
func (*LearnerConfig) GetAveragingConfig ¶
func (m *LearnerConfig) GetAveragingConfig() *AveragingConfig
func (*LearnerConfig) GetConstraints ¶
func (m *LearnerConfig) GetConstraints() *TreeConstraintsConfig
func (*LearnerConfig) GetFeatureFraction ¶
func (m *LearnerConfig) GetFeatureFraction() isLearnerConfig_FeatureFraction
func (*LearnerConfig) GetFeatureFractionPerLevel ¶
func (m *LearnerConfig) GetFeatureFractionPerLevel() float32
func (*LearnerConfig) GetFeatureFractionPerTree ¶
func (m *LearnerConfig) GetFeatureFractionPerTree() float32
func (*LearnerConfig) GetGrowingMode ¶
func (m *LearnerConfig) GetGrowingMode() LearnerConfig_GrowingMode
func (*LearnerConfig) GetLearningRateTuner ¶
func (m *LearnerConfig) GetLearningRateTuner() *LearningRateConfig
func (*LearnerConfig) GetMultiClassStrategy ¶
func (m *LearnerConfig) GetMultiClassStrategy() LearnerConfig_MultiClassStrategy
func (*LearnerConfig) GetNumClasses ¶
func (m *LearnerConfig) GetNumClasses() uint32
func (*LearnerConfig) GetPruningMode ¶
func (m *LearnerConfig) GetPruningMode() LearnerConfig_PruningMode
func (*LearnerConfig) GetRegularization ¶
func (m *LearnerConfig) GetRegularization() *TreeRegularizationConfig
func (*LearnerConfig) ProtoMessage ¶
func (*LearnerConfig) ProtoMessage()
func (*LearnerConfig) Reset ¶
func (m *LearnerConfig) Reset()
func (*LearnerConfig) String ¶
func (m *LearnerConfig) String() string
func (*LearnerConfig) XXX_OneofFuncs ¶
func (*LearnerConfig) XXX_OneofFuncs() (func(msg proto1.Message, b *proto1.Buffer) error, func(msg proto1.Message, tag, wire int, b *proto1.Buffer) (bool, error), func(msg proto1.Message) (n int), []interface{})
XXX_OneofFuncs is for the internal use of the proto package.
type LearnerConfig_FeatureFractionPerLevel ¶
type LearnerConfig_FeatureFractionPerLevel struct {
FeatureFractionPerLevel float32 `protobuf:"fixed32,3,opt,name=feature_fraction_per_level,json=featureFractionPerLevel,oneof"`
}
type LearnerConfig_FeatureFractionPerTree ¶
type LearnerConfig_FeatureFractionPerTree struct {
FeatureFractionPerTree float32 `protobuf:"fixed32,2,opt,name=feature_fraction_per_tree,json=featureFractionPerTree,oneof"`
}
type LearnerConfig_GrowingMode ¶
type LearnerConfig_GrowingMode int32
const ( LearnerConfig_WHOLE_TREE LearnerConfig_GrowingMode = 0 // Layer by layer is only supported by the batch learner. LearnerConfig_LAYER_BY_LAYER LearnerConfig_GrowingMode = 1 )
func (LearnerConfig_GrowingMode) EnumDescriptor ¶
func (LearnerConfig_GrowingMode) EnumDescriptor() ([]byte, []int)
func (LearnerConfig_GrowingMode) String ¶
func (x LearnerConfig_GrowingMode) String() string
type LearnerConfig_MultiClassStrategy ¶
type LearnerConfig_MultiClassStrategy int32
const ( LearnerConfig_TREE_PER_CLASS LearnerConfig_MultiClassStrategy = 0 LearnerConfig_FULL_HESSIAN LearnerConfig_MultiClassStrategy = 1 LearnerConfig_DIAGONAL_HESSIAN LearnerConfig_MultiClassStrategy = 2 )
func (LearnerConfig_MultiClassStrategy) EnumDescriptor ¶
func (LearnerConfig_MultiClassStrategy) EnumDescriptor() ([]byte, []int)
func (LearnerConfig_MultiClassStrategy) String ¶
func (x LearnerConfig_MultiClassStrategy) String() string
type LearnerConfig_PruningMode ¶
type LearnerConfig_PruningMode int32
const ( LearnerConfig_PRE_PRUNE LearnerConfig_PruningMode = 0 LearnerConfig_POST_PRUNE LearnerConfig_PruningMode = 1 )
func (LearnerConfig_PruningMode) EnumDescriptor ¶
func (LearnerConfig_PruningMode) EnumDescriptor() ([]byte, []int)
func (LearnerConfig_PruningMode) String ¶
func (x LearnerConfig_PruningMode) String() string
type LearningRateConfig ¶
type LearningRateConfig struct { // Types that are valid to be assigned to Tuner: // *LearningRateConfig_Fixed // *LearningRateConfig_Dropout // *LearningRateConfig_LineSearch Tuner isLearningRateConfig_Tuner `protobuf_oneof:"tuner"` }
LearningRateConfig describes all supported learning rate tuners.
func (*LearningRateConfig) Descriptor ¶
func (*LearningRateConfig) Descriptor() ([]byte, []int)
func (*LearningRateConfig) GetDropout ¶
func (m *LearningRateConfig) GetDropout() *LearningRateDropoutDrivenConfig
func (*LearningRateConfig) GetFixed ¶
func (m *LearningRateConfig) GetFixed() *LearningRateFixedConfig
func (*LearningRateConfig) GetLineSearch ¶
func (m *LearningRateConfig) GetLineSearch() *LearningRateLineSearchConfig
func (*LearningRateConfig) GetTuner ¶
func (m *LearningRateConfig) GetTuner() isLearningRateConfig_Tuner
func (*LearningRateConfig) ProtoMessage ¶
func (*LearningRateConfig) ProtoMessage()
func (*LearningRateConfig) Reset ¶
func (m *LearningRateConfig) Reset()
func (*LearningRateConfig) String ¶
func (m *LearningRateConfig) String() string
func (*LearningRateConfig) XXX_OneofFuncs ¶
func (*LearningRateConfig) XXX_OneofFuncs() (func(msg proto1.Message, b *proto1.Buffer) error, func(msg proto1.Message, tag, wire int, b *proto1.Buffer) (bool, error), func(msg proto1.Message) (n int), []interface{})
XXX_OneofFuncs is for the internal use of the proto package.
type LearningRateConfig_Dropout ¶
type LearningRateConfig_Dropout struct {
Dropout *LearningRateDropoutDrivenConfig `protobuf:"bytes,2,opt,name=dropout,oneof"`
}
type LearningRateConfig_Fixed ¶
type LearningRateConfig_Fixed struct {
Fixed *LearningRateFixedConfig `protobuf:"bytes,1,opt,name=fixed,oneof"`
}
type LearningRateConfig_LineSearch ¶
type LearningRateConfig_LineSearch struct {
LineSearch *LearningRateLineSearchConfig `protobuf:"bytes,3,opt,name=line_search,json=lineSearch,oneof"`
}
type LearningRateDropoutDrivenConfig ¶
type LearningRateDropoutDrivenConfig struct { // Probability of dropping each tree in an existing so far ensemble. DropoutProbability float32 `protobuf:"fixed32,1,opt,name=dropout_probability,json=dropoutProbability" json:"dropout_probability,omitempty"` // When trees are built after dropout happen, they don't "advance" to the // optimal solution, they just rearrange the path. However you can still // choose to skip dropout periodically, to allow a new tree that "advances" // to be added. // For example, if running for 200 steps with probability of dropout 1/100, // you would expect the dropout to start happening for sure for all iterations // after 100. However you can add probability_of_skipping_dropout of 0.1, this // way iterations 100-200 will include approx 90 iterations of dropout and 10 // iterations of normal steps.Set it to 0 if you want just keep building // the refinement trees after dropout kicks in. ProbabilityOfSkippingDropout float32 `` /* 144-byte string literal not displayed */ // Between 0 and 1. LearningRate float32 `protobuf:"fixed32,3,opt,name=learning_rate,json=learningRate" json:"learning_rate,omitempty"` }
func (*LearningRateDropoutDrivenConfig) Descriptor ¶
func (*LearningRateDropoutDrivenConfig) Descriptor() ([]byte, []int)
func (*LearningRateDropoutDrivenConfig) GetDropoutProbability ¶
func (m *LearningRateDropoutDrivenConfig) GetDropoutProbability() float32
func (*LearningRateDropoutDrivenConfig) GetLearningRate ¶
func (m *LearningRateDropoutDrivenConfig) GetLearningRate() float32
func (*LearningRateDropoutDrivenConfig) GetProbabilityOfSkippingDropout ¶
func (m *LearningRateDropoutDrivenConfig) GetProbabilityOfSkippingDropout() float32
func (*LearningRateDropoutDrivenConfig) ProtoMessage ¶
func (*LearningRateDropoutDrivenConfig) ProtoMessage()
func (*LearningRateDropoutDrivenConfig) Reset ¶
func (m *LearningRateDropoutDrivenConfig) Reset()
func (*LearningRateDropoutDrivenConfig) String ¶
func (m *LearningRateDropoutDrivenConfig) String() string
type LearningRateFixedConfig ¶
type LearningRateFixedConfig struct {
LearningRate float32 `protobuf:"fixed32,1,opt,name=learning_rate,json=learningRate" json:"learning_rate,omitempty"`
}
Config for a fixed learning rate.
func (*LearningRateFixedConfig) Descriptor ¶
func (*LearningRateFixedConfig) Descriptor() ([]byte, []int)
func (*LearningRateFixedConfig) GetLearningRate ¶
func (m *LearningRateFixedConfig) GetLearningRate() float32
func (*LearningRateFixedConfig) ProtoMessage ¶
func (*LearningRateFixedConfig) ProtoMessage()
func (*LearningRateFixedConfig) Reset ¶
func (m *LearningRateFixedConfig) Reset()
func (*LearningRateFixedConfig) String ¶
func (m *LearningRateFixedConfig) String() string
type LearningRateLineSearchConfig ¶
type LearningRateLineSearchConfig struct { // Max learning rate. Must be strictly positive. MaxLearningRate float32 `protobuf:"fixed32,1,opt,name=max_learning_rate,json=maxLearningRate" json:"max_learning_rate,omitempty"` // Number of learning rate values to consider between [0, max_learning_rate). NumSteps int32 `protobuf:"varint,2,opt,name=num_steps,json=numSteps" json:"num_steps,omitempty"` }
Config for a tuned learning rate.
func (*LearningRateLineSearchConfig) Descriptor ¶
func (*LearningRateLineSearchConfig) Descriptor() ([]byte, []int)
func (*LearningRateLineSearchConfig) GetMaxLearningRate ¶
func (m *LearningRateLineSearchConfig) GetMaxLearningRate() float32
func (*LearningRateLineSearchConfig) GetNumSteps ¶
func (m *LearningRateLineSearchConfig) GetNumSteps() int32
func (*LearningRateLineSearchConfig) ProtoMessage ¶
func (*LearningRateLineSearchConfig) ProtoMessage()
func (*LearningRateLineSearchConfig) Reset ¶
func (m *LearningRateLineSearchConfig) Reset()
func (*LearningRateLineSearchConfig) String ¶
func (m *LearningRateLineSearchConfig) String() string
type QuantileConfig ¶
type QuantileConfig struct { // Maximum eps error when computing quantile summaries. Eps float64 `protobuf:"fixed64,1,opt,name=eps" json:"eps,omitempty"` // Number of quantiles to generate. NumQuantiles int64 `protobuf:"varint,2,opt,name=num_quantiles,json=numQuantiles" json:"num_quantiles,omitempty"` }
func (*QuantileConfig) Descriptor ¶
func (*QuantileConfig) Descriptor() ([]byte, []int)
func (*QuantileConfig) GetEps ¶
func (m *QuantileConfig) GetEps() float64
func (*QuantileConfig) GetNumQuantiles ¶
func (m *QuantileConfig) GetNumQuantiles() int64
func (*QuantileConfig) ProtoMessage ¶
func (*QuantileConfig) ProtoMessage()
func (*QuantileConfig) Reset ¶
func (m *QuantileConfig) Reset()
func (*QuantileConfig) String ¶
func (m *QuantileConfig) String() string
type QuantileEntry ¶
type QuantileEntry struct { // Value for the entry. Value float32 `protobuf:"fixed32,1,opt,name=value" json:"value,omitempty"` // Weight for the entry. Weight float32 `protobuf:"fixed32,2,opt,name=weight" json:"weight,omitempty"` // We need the minimum and maximum rank possible for this entry. // Rank is 0.0 for the absolute minimum and sum of the weights for the maximum // value in the input. MinRank float32 `protobuf:"fixed32,3,opt,name=min_rank,json=minRank" json:"min_rank,omitempty"` MaxRank float32 `protobuf:"fixed32,4,opt,name=max_rank,json=maxRank" json:"max_rank,omitempty"` }
func (*QuantileEntry) Descriptor ¶
func (*QuantileEntry) Descriptor() ([]byte, []int)
func (*QuantileEntry) GetMaxRank ¶
func (m *QuantileEntry) GetMaxRank() float32
func (*QuantileEntry) GetMinRank ¶
func (m *QuantileEntry) GetMinRank() float32
func (*QuantileEntry) GetValue ¶
func (m *QuantileEntry) GetValue() float32
func (*QuantileEntry) GetWeight ¶
func (m *QuantileEntry) GetWeight() float32
func (*QuantileEntry) ProtoMessage ¶
func (*QuantileEntry) ProtoMessage()
func (*QuantileEntry) Reset ¶
func (m *QuantileEntry) Reset()
func (*QuantileEntry) String ¶
func (m *QuantileEntry) String() string
type QuantileStreamState ¶
type QuantileStreamState struct {
Summaries []*QuantileSummaryState `protobuf:"bytes,1,rep,name=summaries" json:"summaries,omitempty"`
}
func (*QuantileStreamState) Descriptor ¶
func (*QuantileStreamState) Descriptor() ([]byte, []int)
func (*QuantileStreamState) GetSummaries ¶
func (m *QuantileStreamState) GetSummaries() []*QuantileSummaryState
func (*QuantileStreamState) ProtoMessage ¶
func (*QuantileStreamState) ProtoMessage()
func (*QuantileStreamState) Reset ¶
func (m *QuantileStreamState) Reset()
func (*QuantileStreamState) String ¶
func (m *QuantileStreamState) String() string
type QuantileSummaryState ¶
type QuantileSummaryState struct {
Entries []*QuantileEntry `protobuf:"bytes,1,rep,name=entries" json:"entries,omitempty"`
}
func (*QuantileSummaryState) Descriptor ¶
func (*QuantileSummaryState) Descriptor() ([]byte, []int)
func (*QuantileSummaryState) GetEntries ¶
func (m *QuantileSummaryState) GetEntries() []*QuantileEntry
func (*QuantileSummaryState) ProtoMessage ¶
func (*QuantileSummaryState) ProtoMessage()
func (*QuantileSummaryState) Reset ¶
func (m *QuantileSummaryState) Reset()
func (*QuantileSummaryState) String ¶
func (m *QuantileSummaryState) String() string
type SparseFloatBinarySplitDefaultLeft ¶
type SparseFloatBinarySplitDefaultLeft struct {
Split *DenseFloatBinarySplit `protobuf:"bytes,1,opt,name=split" json:"split,omitempty"`
}
Split rule for sparse float features defaulting left for missing features.
func (*SparseFloatBinarySplitDefaultLeft) Descriptor ¶
func (*SparseFloatBinarySplitDefaultLeft) Descriptor() ([]byte, []int)
func (*SparseFloatBinarySplitDefaultLeft) GetSplit ¶
func (m *SparseFloatBinarySplitDefaultLeft) GetSplit() *DenseFloatBinarySplit
func (*SparseFloatBinarySplitDefaultLeft) ProtoMessage ¶
func (*SparseFloatBinarySplitDefaultLeft) ProtoMessage()
func (*SparseFloatBinarySplitDefaultLeft) Reset ¶
func (m *SparseFloatBinarySplitDefaultLeft) Reset()
func (*SparseFloatBinarySplitDefaultLeft) String ¶
func (m *SparseFloatBinarySplitDefaultLeft) String() string
type SparseFloatBinarySplitDefaultRight ¶
type SparseFloatBinarySplitDefaultRight struct {
Split *DenseFloatBinarySplit `protobuf:"bytes,1,opt,name=split" json:"split,omitempty"`
}
Split rule for sparse float features defaulting right for missing features.
func (*SparseFloatBinarySplitDefaultRight) Descriptor ¶
func (*SparseFloatBinarySplitDefaultRight) Descriptor() ([]byte, []int)
func (*SparseFloatBinarySplitDefaultRight) GetSplit ¶
func (m *SparseFloatBinarySplitDefaultRight) GetSplit() *DenseFloatBinarySplit
func (*SparseFloatBinarySplitDefaultRight) ProtoMessage ¶
func (*SparseFloatBinarySplitDefaultRight) ProtoMessage()
func (*SparseFloatBinarySplitDefaultRight) Reset ¶
func (m *SparseFloatBinarySplitDefaultRight) Reset()
func (*SparseFloatBinarySplitDefaultRight) String ¶
func (m *SparseFloatBinarySplitDefaultRight) String() string
type SparseVector ¶
type SparseVector struct { Index []int32 `protobuf:"varint,1,rep,packed,name=index" json:"index,omitempty"` Value []float32 `protobuf:"fixed32,2,rep,packed,name=value" json:"value,omitempty"` }
func (*SparseVector) Descriptor ¶
func (*SparseVector) Descriptor() ([]byte, []int)
func (*SparseVector) GetIndex ¶
func (m *SparseVector) GetIndex() []int32
func (*SparseVector) GetValue ¶
func (m *SparseVector) GetValue() []float32
func (*SparseVector) ProtoMessage ¶
func (*SparseVector) ProtoMessage()
func (*SparseVector) Reset ¶
func (m *SparseVector) Reset()
func (*SparseVector) String ¶
func (m *SparseVector) String() string
type TreeConstraintsConfig ¶
type TreeConstraintsConfig struct { // Maximum depth of the trees. MaxTreeDepth uint32 `protobuf:"varint,1,opt,name=max_tree_depth,json=maxTreeDepth" json:"max_tree_depth,omitempty"` // Min hessian weight per node. MinNodeWeight float32 `protobuf:"fixed32,2,opt,name=min_node_weight,json=minNodeWeight" json:"min_node_weight,omitempty"` }
Tree constraints config.
func (*TreeConstraintsConfig) Descriptor ¶
func (*TreeConstraintsConfig) Descriptor() ([]byte, []int)
func (*TreeConstraintsConfig) GetMaxTreeDepth ¶
func (m *TreeConstraintsConfig) GetMaxTreeDepth() uint32
func (*TreeConstraintsConfig) GetMinNodeWeight ¶
func (m *TreeConstraintsConfig) GetMinNodeWeight() float32
func (*TreeConstraintsConfig) ProtoMessage ¶
func (*TreeConstraintsConfig) ProtoMessage()
func (*TreeConstraintsConfig) Reset ¶
func (m *TreeConstraintsConfig) Reset()
func (*TreeConstraintsConfig) String ¶
func (m *TreeConstraintsConfig) String() string
type TreeNode ¶
type TreeNode struct { // Types that are valid to be assigned to Node: // *TreeNode_Leaf // *TreeNode_DenseFloatBinarySplit // *TreeNode_SparseFloatBinarySplitDefaultLeft // *TreeNode_SparseFloatBinarySplitDefaultRight // *TreeNode_CategoricalIdBinarySplit // *TreeNode_CategoricalIdSetMembershipBinarySplit Node isTreeNode_Node `protobuf_oneof:"node"` NodeMetadata *TreeNodeMetadata `protobuf:"bytes,777,opt,name=node_metadata,json=nodeMetadata" json:"node_metadata,omitempty"` }
TreeNode describes a node in a tree.
func (*TreeNode) Descriptor ¶
func (*TreeNode) GetCategoricalIdBinarySplit ¶
func (m *TreeNode) GetCategoricalIdBinarySplit() *CategoricalIdBinarySplit
func (*TreeNode) GetCategoricalIdSetMembershipBinarySplit ¶
func (m *TreeNode) GetCategoricalIdSetMembershipBinarySplit() *CategoricalIdSetMembershipBinarySplit
func (*TreeNode) GetDenseFloatBinarySplit ¶
func (m *TreeNode) GetDenseFloatBinarySplit() *DenseFloatBinarySplit
func (*TreeNode) GetNodeMetadata ¶
func (m *TreeNode) GetNodeMetadata() *TreeNodeMetadata
func (*TreeNode) GetSparseFloatBinarySplitDefaultLeft ¶
func (m *TreeNode) GetSparseFloatBinarySplitDefaultLeft() *SparseFloatBinarySplitDefaultLeft
func (*TreeNode) GetSparseFloatBinarySplitDefaultRight ¶
func (m *TreeNode) GetSparseFloatBinarySplitDefaultRight() *SparseFloatBinarySplitDefaultRight
func (*TreeNode) ProtoMessage ¶
func (*TreeNode) ProtoMessage()
func (*TreeNode) XXX_OneofFuncs ¶
func (*TreeNode) XXX_OneofFuncs() (func(msg proto1.Message, b *proto1.Buffer) error, func(msg proto1.Message, tag, wire int, b *proto1.Buffer) (bool, error), func(msg proto1.Message) (n int), []interface{})
XXX_OneofFuncs is for the internal use of the proto package.
type TreeNodeMetadata ¶
type TreeNodeMetadata struct { // The gain associated with this node. Gain float32 `protobuf:"fixed32,1,opt,name=gain" json:"gain,omitempty"` // The original leaf node before this node was split. OriginalLeaf *Leaf `protobuf:"bytes,2,opt,name=original_leaf,json=originalLeaf" json:"original_leaf,omitempty"` }
TreeNodeMetadata encodes metadata associated with each node in a tree.
func (*TreeNodeMetadata) Descriptor ¶
func (*TreeNodeMetadata) Descriptor() ([]byte, []int)
func (*TreeNodeMetadata) GetGain ¶
func (m *TreeNodeMetadata) GetGain() float32
func (*TreeNodeMetadata) GetOriginalLeaf ¶
func (m *TreeNodeMetadata) GetOriginalLeaf() *Leaf
func (*TreeNodeMetadata) ProtoMessage ¶
func (*TreeNodeMetadata) ProtoMessage()
func (*TreeNodeMetadata) Reset ¶
func (m *TreeNodeMetadata) Reset()
func (*TreeNodeMetadata) String ¶
func (m *TreeNodeMetadata) String() string
type TreeNode_CategoricalIdBinarySplit ¶
type TreeNode_CategoricalIdBinarySplit struct {
CategoricalIdBinarySplit *CategoricalIdBinarySplit `protobuf:"bytes,5,opt,name=categorical_id_binary_split,json=categoricalIdBinarySplit,oneof"`
}
type TreeNode_CategoricalIdSetMembershipBinarySplit ¶
type TreeNode_CategoricalIdSetMembershipBinarySplit struct {
CategoricalIdSetMembershipBinarySplit *CategoricalIdSetMembershipBinarySplit `protobuf:"bytes,6,opt,name=categorical_id_set_membership_binary_split,json=categoricalIdSetMembershipBinarySplit,oneof"`
}
type TreeNode_DenseFloatBinarySplit ¶
type TreeNode_DenseFloatBinarySplit struct {
DenseFloatBinarySplit *DenseFloatBinarySplit `protobuf:"bytes,2,opt,name=dense_float_binary_split,json=denseFloatBinarySplit,oneof"`
}
type TreeNode_Leaf ¶
type TreeNode_Leaf struct {
Leaf *Leaf `protobuf:"bytes,1,opt,name=leaf,oneof"`
}
type TreeNode_SparseFloatBinarySplitDefaultLeft ¶
type TreeNode_SparseFloatBinarySplitDefaultLeft struct {
SparseFloatBinarySplitDefaultLeft *SparseFloatBinarySplitDefaultLeft `protobuf:"bytes,3,opt,name=sparse_float_binary_split_default_left,json=sparseFloatBinarySplitDefaultLeft,oneof"`
}
type TreeNode_SparseFloatBinarySplitDefaultRight ¶
type TreeNode_SparseFloatBinarySplitDefaultRight struct {
SparseFloatBinarySplitDefaultRight *SparseFloatBinarySplitDefaultRight `protobuf:"bytes,4,opt,name=sparse_float_binary_split_default_right,json=sparseFloatBinarySplitDefaultRight,oneof"`
}
type TreeRegularizationConfig ¶
type TreeRegularizationConfig struct { // Classic L1/L2. L1 float32 `protobuf:"fixed32,1,opt,name=l1" json:"l1,omitempty"` L2 float32 `protobuf:"fixed32,2,opt,name=l2" json:"l2,omitempty"` // Tree complexity penalizes overall model complexity effectively // limiting how deep the tree can grow in regions with small gain. TreeComplexity float32 `protobuf:"fixed32,3,opt,name=tree_complexity,json=treeComplexity" json:"tree_complexity,omitempty"` }
Tree regularization config.
func (*TreeRegularizationConfig) Descriptor ¶
func (*TreeRegularizationConfig) Descriptor() ([]byte, []int)
func (*TreeRegularizationConfig) GetL1 ¶
func (m *TreeRegularizationConfig) GetL1() float32
func (*TreeRegularizationConfig) GetL2 ¶
func (m *TreeRegularizationConfig) GetL2() float32
func (*TreeRegularizationConfig) GetTreeComplexity ¶
func (m *TreeRegularizationConfig) GetTreeComplexity() float32
func (*TreeRegularizationConfig) ProtoMessage ¶
func (*TreeRegularizationConfig) ProtoMessage()
func (*TreeRegularizationConfig) Reset ¶
func (m *TreeRegularizationConfig) Reset()
func (*TreeRegularizationConfig) String ¶
func (m *TreeRegularizationConfig) String() string
type Vector ¶
type Vector struct {
Value []float32 `protobuf:"fixed32,1,rep,packed,name=value" json:"value,omitempty"`
}
func (*Vector) Descriptor ¶
func (*Vector) ProtoMessage ¶
func (*Vector) ProtoMessage()