proto

package
v0.0.0-...-d1695c4 Latest Latest
Warning

This package is not in the latest version of its module.

Go to latest
Published: Sep 29, 2021 License: Apache-2.0 Imports: 3 Imported by: 0

Documentation

Overview

Package proto is a generated protocol buffer package.

It is generated from these files:

tensorflow/contrib/boosted_trees/proto/learner.proto
tensorflow/contrib/boosted_trees/proto/quantiles.proto
tensorflow/contrib/boosted_trees/proto/tree_config.proto

It has these top-level messages:

TreeRegularizationConfig
TreeConstraintsConfig
LearningRateConfig
LearningRateFixedConfig
LearningRateLineSearchConfig
AveragingConfig
LearningRateDropoutDrivenConfig
LearnerConfig
QuantileConfig
QuantileEntry
QuantileSummaryState
QuantileStreamState
TreeNode
TreeNodeMetadata
Leaf
Vector
SparseVector
DenseFloatBinarySplit
SparseFloatBinarySplitDefaultLeft
SparseFloatBinarySplitDefaultRight
CategoricalIdBinarySplit
CategoricalIdSetMembershipBinarySplit
DecisionTreeConfig
DecisionTreeMetadata
GrowingMetadata
DecisionTreeEnsembleConfig

Index

Constants

This section is empty.

Variables

View Source
var LearnerConfig_GrowingMode_name = map[int32]string{
	0: "WHOLE_TREE",
	1: "LAYER_BY_LAYER",
}
View Source
var LearnerConfig_GrowingMode_value = map[string]int32{
	"WHOLE_TREE":     0,
	"LAYER_BY_LAYER": 1,
}
View Source
var LearnerConfig_MultiClassStrategy_name = map[int32]string{
	0: "TREE_PER_CLASS",
	1: "FULL_HESSIAN",
	2: "DIAGONAL_HESSIAN",
}
View Source
var LearnerConfig_MultiClassStrategy_value = map[string]int32{
	"TREE_PER_CLASS":   0,
	"FULL_HESSIAN":     1,
	"DIAGONAL_HESSIAN": 2,
}
View Source
var LearnerConfig_PruningMode_name = map[int32]string{
	0: "PRE_PRUNE",
	1: "POST_PRUNE",
}
View Source
var LearnerConfig_PruningMode_value = map[string]int32{
	"PRE_PRUNE":  0,
	"POST_PRUNE": 1,
}

Functions

This section is empty.

Types

type AveragingConfig

type AveragingConfig struct {
	// Types that are valid to be assigned to Config:
	//	*AveragingConfig_AverageLastNTrees
	//	*AveragingConfig_AverageLastPercentTrees
	Config isAveragingConfig_Config `protobuf_oneof:"config"`
}

When we have a sequence of trees 1, 2, 3 ... n, these essentially represent weights updates in functional space, and thus we can use averaging of weight updates to achieve better performance. For example, we can say that our final ensemble will be an average of ensembles of tree 1, and ensemble of tree 1 and tree 2 etc .. ensemble of all trees. Note that this averaging will apply ONLY DURING PREDICTION. The training stays the same.

func (*AveragingConfig) Descriptor

func (*AveragingConfig) Descriptor() ([]byte, []int)

func (*AveragingConfig) GetAverageLastNTrees

func (m *AveragingConfig) GetAverageLastNTrees() float32

func (*AveragingConfig) GetAverageLastPercentTrees

func (m *AveragingConfig) GetAverageLastPercentTrees() float32

func (*AveragingConfig) GetConfig

func (m *AveragingConfig) GetConfig() isAveragingConfig_Config

func (*AveragingConfig) ProtoMessage

func (*AveragingConfig) ProtoMessage()

func (*AveragingConfig) Reset

func (m *AveragingConfig) Reset()

func (*AveragingConfig) String

func (m *AveragingConfig) String() string

func (*AveragingConfig) XXX_OneofFuncs

func (*AveragingConfig) XXX_OneofFuncs() (func(msg proto1.Message, b *proto1.Buffer) error, func(msg proto1.Message, tag, wire int, b *proto1.Buffer) (bool, error), func(msg proto1.Message) (n int), []interface{})

XXX_OneofFuncs is for the internal use of the proto package.

type AveragingConfig_AverageLastNTrees

type AveragingConfig_AverageLastNTrees struct {
	AverageLastNTrees float32 `protobuf:"fixed32,1,opt,name=average_last_n_trees,json=averageLastNTrees,oneof"`
}

type AveragingConfig_AverageLastPercentTrees

type AveragingConfig_AverageLastPercentTrees struct {
	AverageLastPercentTrees float32 `protobuf:"fixed32,2,opt,name=average_last_percent_trees,json=averageLastPercentTrees,oneof"`
}

type CategoricalIdBinarySplit

type CategoricalIdBinarySplit struct {
	// Categorical feature column and Id describing
	// the rule feature == Id.
	FeatureColumn int32 `protobuf:"varint,1,opt,name=feature_column,json=featureColumn" json:"feature_column,omitempty"`
	FeatureId     int64 `protobuf:"varint,2,opt,name=feature_id,json=featureId" json:"feature_id,omitempty"`
	// Node children indexing into a contiguous
	// vector of nodes starting from the root.
	LeftId  int32 `protobuf:"varint,3,opt,name=left_id,json=leftId" json:"left_id,omitempty"`
	RightId int32 `protobuf:"varint,4,opt,name=right_id,json=rightId" json:"right_id,omitempty"`
}

Split rule for categorical features with a single feature Id.

func (*CategoricalIdBinarySplit) Descriptor

func (*CategoricalIdBinarySplit) Descriptor() ([]byte, []int)

func (*CategoricalIdBinarySplit) GetFeatureColumn

func (m *CategoricalIdBinarySplit) GetFeatureColumn() int32

func (*CategoricalIdBinarySplit) GetFeatureId

func (m *CategoricalIdBinarySplit) GetFeatureId() int64

func (*CategoricalIdBinarySplit) GetLeftId

func (m *CategoricalIdBinarySplit) GetLeftId() int32

func (*CategoricalIdBinarySplit) GetRightId

func (m *CategoricalIdBinarySplit) GetRightId() int32

func (*CategoricalIdBinarySplit) ProtoMessage

func (*CategoricalIdBinarySplit) ProtoMessage()

func (*CategoricalIdBinarySplit) Reset

func (m *CategoricalIdBinarySplit) Reset()

func (*CategoricalIdBinarySplit) String

func (m *CategoricalIdBinarySplit) String() string

type CategoricalIdSetMembershipBinarySplit

type CategoricalIdSetMembershipBinarySplit struct {
	// Categorical feature column and Id describing
	// the rule feature ∈ feature_ids.
	FeatureColumn int32 `protobuf:"varint,1,opt,name=feature_column,json=featureColumn" json:"feature_column,omitempty"`
	// Sorted list of Ids in the set.
	FeatureIds []int64 `protobuf:"varint,2,rep,packed,name=feature_ids,json=featureIds" json:"feature_ids,omitempty"`
	// Node children indexing into a contiguous
	// vector of nodes starting from the root.
	LeftId  int32 `protobuf:"varint,3,opt,name=left_id,json=leftId" json:"left_id,omitempty"`
	RightId int32 `protobuf:"varint,4,opt,name=right_id,json=rightId" json:"right_id,omitempty"`
}

Split rule for categorical features with a set of feature Ids.

func (*CategoricalIdSetMembershipBinarySplit) Descriptor

func (*CategoricalIdSetMembershipBinarySplit) Descriptor() ([]byte, []int)

func (*CategoricalIdSetMembershipBinarySplit) GetFeatureColumn

func (m *CategoricalIdSetMembershipBinarySplit) GetFeatureColumn() int32

func (*CategoricalIdSetMembershipBinarySplit) GetFeatureIds

func (m *CategoricalIdSetMembershipBinarySplit) GetFeatureIds() []int64

func (*CategoricalIdSetMembershipBinarySplit) GetLeftId

func (*CategoricalIdSetMembershipBinarySplit) GetRightId

func (*CategoricalIdSetMembershipBinarySplit) ProtoMessage

func (*CategoricalIdSetMembershipBinarySplit) ProtoMessage()

func (*CategoricalIdSetMembershipBinarySplit) Reset

func (*CategoricalIdSetMembershipBinarySplit) String

type DecisionTreeConfig

type DecisionTreeConfig struct {
	Nodes []*TreeNode `protobuf:"bytes,1,rep,name=nodes" json:"nodes,omitempty"`
}

DecisionTreeConfig describes a list of connected nodes. Node 0 must be the root and can carry any payload including a leaf in the case of representing the bias. Note that each node id is implicitly its index in the list of nodes.

func (*DecisionTreeConfig) Descriptor

func (*DecisionTreeConfig) Descriptor() ([]byte, []int)

func (*DecisionTreeConfig) GetNodes

func (m *DecisionTreeConfig) GetNodes() []*TreeNode

func (*DecisionTreeConfig) ProtoMessage

func (*DecisionTreeConfig) ProtoMessage()

func (*DecisionTreeConfig) Reset

func (m *DecisionTreeConfig) Reset()

func (*DecisionTreeConfig) String

func (m *DecisionTreeConfig) String() string

type DecisionTreeEnsembleConfig

type DecisionTreeEnsembleConfig struct {
	Trees        []*DecisionTreeConfig   `protobuf:"bytes,1,rep,name=trees" json:"trees,omitempty"`
	TreeWeights  []float32               `protobuf:"fixed32,2,rep,packed,name=tree_weights,json=treeWeights" json:"tree_weights,omitempty"`
	TreeMetadata []*DecisionTreeMetadata `protobuf:"bytes,3,rep,name=tree_metadata,json=treeMetadata" json:"tree_metadata,omitempty"`
	// Metadata that is used during the training.
	GrowingMetadata *GrowingMetadata `protobuf:"bytes,4,opt,name=growing_metadata,json=growingMetadata" json:"growing_metadata,omitempty"`
}

DecisionTreeEnsembleConfig describes an ensemble of decision trees.

func (*DecisionTreeEnsembleConfig) Descriptor

func (*DecisionTreeEnsembleConfig) Descriptor() ([]byte, []int)

func (*DecisionTreeEnsembleConfig) GetGrowingMetadata

func (m *DecisionTreeEnsembleConfig) GetGrowingMetadata() *GrowingMetadata

func (*DecisionTreeEnsembleConfig) GetTreeMetadata

func (m *DecisionTreeEnsembleConfig) GetTreeMetadata() []*DecisionTreeMetadata

func (*DecisionTreeEnsembleConfig) GetTreeWeights

func (m *DecisionTreeEnsembleConfig) GetTreeWeights() []float32

func (*DecisionTreeEnsembleConfig) GetTrees

func (*DecisionTreeEnsembleConfig) ProtoMessage

func (*DecisionTreeEnsembleConfig) ProtoMessage()

func (*DecisionTreeEnsembleConfig) Reset

func (m *DecisionTreeEnsembleConfig) Reset()

func (*DecisionTreeEnsembleConfig) String

func (m *DecisionTreeEnsembleConfig) String() string

type DecisionTreeMetadata

type DecisionTreeMetadata struct {
	// How many times tree weight was updated (due to reweighting of the final
	// ensemble, dropout, shrinkage etc).
	NumTreeWeightUpdates int32 `protobuf:"varint,1,opt,name=num_tree_weight_updates,json=numTreeWeightUpdates" json:"num_tree_weight_updates,omitempty"`
	// Number of layers grown for this tree.
	NumLayersGrown int32 `protobuf:"varint,2,opt,name=num_layers_grown,json=numLayersGrown" json:"num_layers_grown,omitempty"`
	// Whether the tree is finalized in that no more layers can be grown.
	IsFinalized bool `protobuf:"varint,3,opt,name=is_finalized,json=isFinalized" json:"is_finalized,omitempty"`
}

func (*DecisionTreeMetadata) Descriptor

func (*DecisionTreeMetadata) Descriptor() ([]byte, []int)

func (*DecisionTreeMetadata) GetIsFinalized

func (m *DecisionTreeMetadata) GetIsFinalized() bool

func (*DecisionTreeMetadata) GetNumLayersGrown

func (m *DecisionTreeMetadata) GetNumLayersGrown() int32

func (*DecisionTreeMetadata) GetNumTreeWeightUpdates

func (m *DecisionTreeMetadata) GetNumTreeWeightUpdates() int32

func (*DecisionTreeMetadata) ProtoMessage

func (*DecisionTreeMetadata) ProtoMessage()

func (*DecisionTreeMetadata) Reset

func (m *DecisionTreeMetadata) Reset()

func (*DecisionTreeMetadata) String

func (m *DecisionTreeMetadata) String() string

type DenseFloatBinarySplit

type DenseFloatBinarySplit struct {
	// Float feature column and split threshold describing
	// the rule feature <= threshold.
	FeatureColumn int32   `protobuf:"varint,1,opt,name=feature_column,json=featureColumn" json:"feature_column,omitempty"`
	Threshold     float32 `protobuf:"fixed32,2,opt,name=threshold" json:"threshold,omitempty"`
	// Node children indexing into a contiguous
	// vector of nodes starting from the root.
	LeftId  int32 `protobuf:"varint,3,opt,name=left_id,json=leftId" json:"left_id,omitempty"`
	RightId int32 `protobuf:"varint,4,opt,name=right_id,json=rightId" json:"right_id,omitempty"`
}

Split rule for dense float features.

func (*DenseFloatBinarySplit) Descriptor

func (*DenseFloatBinarySplit) Descriptor() ([]byte, []int)

func (*DenseFloatBinarySplit) GetFeatureColumn

func (m *DenseFloatBinarySplit) GetFeatureColumn() int32

func (*DenseFloatBinarySplit) GetLeftId

func (m *DenseFloatBinarySplit) GetLeftId() int32

func (*DenseFloatBinarySplit) GetRightId

func (m *DenseFloatBinarySplit) GetRightId() int32

func (*DenseFloatBinarySplit) GetThreshold

func (m *DenseFloatBinarySplit) GetThreshold() float32

func (*DenseFloatBinarySplit) ProtoMessage

func (*DenseFloatBinarySplit) ProtoMessage()

func (*DenseFloatBinarySplit) Reset

func (m *DenseFloatBinarySplit) Reset()

func (*DenseFloatBinarySplit) String

func (m *DenseFloatBinarySplit) String() string

type GrowingMetadata

type GrowingMetadata struct {
	// Number of trees that we have attempted to build. After pruning, these
	// trees might have been removed.
	NumTreesAttempted int64 `protobuf:"varint,1,opt,name=num_trees_attempted,json=numTreesAttempted" json:"num_trees_attempted,omitempty"`
	// Number of layers that we have attempted to build. After pruning, these
	// layers might have been removed.
	NumLayersAttempted int64 `protobuf:"varint,2,opt,name=num_layers_attempted,json=numLayersAttempted" json:"num_layers_attempted,omitempty"`
}

func (*GrowingMetadata) Descriptor

func (*GrowingMetadata) Descriptor() ([]byte, []int)

func (*GrowingMetadata) GetNumLayersAttempted

func (m *GrowingMetadata) GetNumLayersAttempted() int64

func (*GrowingMetadata) GetNumTreesAttempted

func (m *GrowingMetadata) GetNumTreesAttempted() int64

func (*GrowingMetadata) ProtoMessage

func (*GrowingMetadata) ProtoMessage()

func (*GrowingMetadata) Reset

func (m *GrowingMetadata) Reset()

func (*GrowingMetadata) String

func (m *GrowingMetadata) String() string

type Leaf

type Leaf struct {
	// Types that are valid to be assigned to Leaf:
	//	*Leaf_Vector
	//	*Leaf_SparseVector
	Leaf isLeaf_Leaf `protobuf_oneof:"leaf"`
}

Leaves can either hold dense or sparse information.

func (*Leaf) Descriptor

func (*Leaf) Descriptor() ([]byte, []int)

func (*Leaf) GetLeaf

func (m *Leaf) GetLeaf() isLeaf_Leaf

func (*Leaf) GetSparseVector

func (m *Leaf) GetSparseVector() *SparseVector

func (*Leaf) GetVector

func (m *Leaf) GetVector() *Vector

func (*Leaf) ProtoMessage

func (*Leaf) ProtoMessage()

func (*Leaf) Reset

func (m *Leaf) Reset()

func (*Leaf) String

func (m *Leaf) String() string

func (*Leaf) XXX_OneofFuncs

func (*Leaf) XXX_OneofFuncs() (func(msg proto1.Message, b *proto1.Buffer) error, func(msg proto1.Message, tag, wire int, b *proto1.Buffer) (bool, error), func(msg proto1.Message) (n int), []interface{})

XXX_OneofFuncs is for the internal use of the proto package.

type Leaf_SparseVector

type Leaf_SparseVector struct {
	SparseVector *SparseVector `protobuf:"bytes,2,opt,name=sparse_vector,json=sparseVector,oneof"`
}

type Leaf_Vector

type Leaf_Vector struct {
	Vector *Vector `protobuf:"bytes,1,opt,name=vector,oneof"`
}

type LearnerConfig

type LearnerConfig struct {
	// Number of classes.
	NumClasses uint32 `protobuf:"varint,1,opt,name=num_classes,json=numClasses" json:"num_classes,omitempty"`
	// Fraction of features to consider in each tree sampled randomly
	// from all available features.
	//
	// Types that are valid to be assigned to FeatureFraction:
	//	*LearnerConfig_FeatureFractionPerTree
	//	*LearnerConfig_FeatureFractionPerLevel
	FeatureFraction isLearnerConfig_FeatureFraction `protobuf_oneof:"feature_fraction"`
	// Regularization.
	Regularization *TreeRegularizationConfig `protobuf:"bytes,4,opt,name=regularization" json:"regularization,omitempty"`
	// Constraints.
	Constraints *TreeConstraintsConfig `protobuf:"bytes,5,opt,name=constraints" json:"constraints,omitempty"`
	// Pruning.
	PruningMode LearnerConfig_PruningMode `` /* 152-byte string literal not displayed */
	// Growing Mode.
	GrowingMode LearnerConfig_GrowingMode `` /* 152-byte string literal not displayed */
	// Learning rate.
	LearningRateTuner *LearningRateConfig `protobuf:"bytes,6,opt,name=learning_rate_tuner,json=learningRateTuner" json:"learning_rate_tuner,omitempty"`
	// Multi-class strategy.
	MultiClassStrategy LearnerConfig_MultiClassStrategy `` /* 183-byte string literal not displayed */
	// If you want to average the ensembles (for regularization), provide the
	// config below.
	AveragingConfig *AveragingConfig `protobuf:"bytes,11,opt,name=averaging_config,json=averagingConfig" json:"averaging_config,omitempty"`
}

func (*LearnerConfig) Descriptor

func (*LearnerConfig) Descriptor() ([]byte, []int)

func (*LearnerConfig) GetAveragingConfig

func (m *LearnerConfig) GetAveragingConfig() *AveragingConfig

func (*LearnerConfig) GetConstraints

func (m *LearnerConfig) GetConstraints() *TreeConstraintsConfig

func (*LearnerConfig) GetFeatureFraction

func (m *LearnerConfig) GetFeatureFraction() isLearnerConfig_FeatureFraction

func (*LearnerConfig) GetFeatureFractionPerLevel

func (m *LearnerConfig) GetFeatureFractionPerLevel() float32

func (*LearnerConfig) GetFeatureFractionPerTree

func (m *LearnerConfig) GetFeatureFractionPerTree() float32

func (*LearnerConfig) GetGrowingMode

func (m *LearnerConfig) GetGrowingMode() LearnerConfig_GrowingMode

func (*LearnerConfig) GetLearningRateTuner

func (m *LearnerConfig) GetLearningRateTuner() *LearningRateConfig

func (*LearnerConfig) GetMultiClassStrategy

func (m *LearnerConfig) GetMultiClassStrategy() LearnerConfig_MultiClassStrategy

func (*LearnerConfig) GetNumClasses

func (m *LearnerConfig) GetNumClasses() uint32

func (*LearnerConfig) GetPruningMode

func (m *LearnerConfig) GetPruningMode() LearnerConfig_PruningMode

func (*LearnerConfig) GetRegularization

func (m *LearnerConfig) GetRegularization() *TreeRegularizationConfig

func (*LearnerConfig) ProtoMessage

func (*LearnerConfig) ProtoMessage()

func (*LearnerConfig) Reset

func (m *LearnerConfig) Reset()

func (*LearnerConfig) String

func (m *LearnerConfig) String() string

func (*LearnerConfig) XXX_OneofFuncs

func (*LearnerConfig) XXX_OneofFuncs() (func(msg proto1.Message, b *proto1.Buffer) error, func(msg proto1.Message, tag, wire int, b *proto1.Buffer) (bool, error), func(msg proto1.Message) (n int), []interface{})

XXX_OneofFuncs is for the internal use of the proto package.

type LearnerConfig_FeatureFractionPerLevel

type LearnerConfig_FeatureFractionPerLevel struct {
	FeatureFractionPerLevel float32 `protobuf:"fixed32,3,opt,name=feature_fraction_per_level,json=featureFractionPerLevel,oneof"`
}

type LearnerConfig_FeatureFractionPerTree

type LearnerConfig_FeatureFractionPerTree struct {
	FeatureFractionPerTree float32 `protobuf:"fixed32,2,opt,name=feature_fraction_per_tree,json=featureFractionPerTree,oneof"`
}

type LearnerConfig_GrowingMode

type LearnerConfig_GrowingMode int32
const (
	LearnerConfig_WHOLE_TREE LearnerConfig_GrowingMode = 0
	// Layer by layer is only supported by the batch learner.
	LearnerConfig_LAYER_BY_LAYER LearnerConfig_GrowingMode = 1
)

func (LearnerConfig_GrowingMode) EnumDescriptor

func (LearnerConfig_GrowingMode) EnumDescriptor() ([]byte, []int)

func (LearnerConfig_GrowingMode) String

func (x LearnerConfig_GrowingMode) String() string

type LearnerConfig_MultiClassStrategy

type LearnerConfig_MultiClassStrategy int32
const (
	LearnerConfig_TREE_PER_CLASS   LearnerConfig_MultiClassStrategy = 0
	LearnerConfig_FULL_HESSIAN     LearnerConfig_MultiClassStrategy = 1
	LearnerConfig_DIAGONAL_HESSIAN LearnerConfig_MultiClassStrategy = 2
)

func (LearnerConfig_MultiClassStrategy) EnumDescriptor

func (LearnerConfig_MultiClassStrategy) EnumDescriptor() ([]byte, []int)

func (LearnerConfig_MultiClassStrategy) String

type LearnerConfig_PruningMode

type LearnerConfig_PruningMode int32
const (
	LearnerConfig_PRE_PRUNE  LearnerConfig_PruningMode = 0
	LearnerConfig_POST_PRUNE LearnerConfig_PruningMode = 1
)

func (LearnerConfig_PruningMode) EnumDescriptor

func (LearnerConfig_PruningMode) EnumDescriptor() ([]byte, []int)

func (LearnerConfig_PruningMode) String

func (x LearnerConfig_PruningMode) String() string

type LearningRateConfig

type LearningRateConfig struct {
	// Types that are valid to be assigned to Tuner:
	//	*LearningRateConfig_Fixed
	//	*LearningRateConfig_Dropout
	//	*LearningRateConfig_LineSearch
	Tuner isLearningRateConfig_Tuner `protobuf_oneof:"tuner"`
}

LearningRateConfig describes all supported learning rate tuners.

func (*LearningRateConfig) Descriptor

func (*LearningRateConfig) Descriptor() ([]byte, []int)

func (*LearningRateConfig) GetDropout

func (*LearningRateConfig) GetFixed

func (*LearningRateConfig) GetLineSearch

func (*LearningRateConfig) GetTuner

func (m *LearningRateConfig) GetTuner() isLearningRateConfig_Tuner

func (*LearningRateConfig) ProtoMessage

func (*LearningRateConfig) ProtoMessage()

func (*LearningRateConfig) Reset

func (m *LearningRateConfig) Reset()

func (*LearningRateConfig) String

func (m *LearningRateConfig) String() string

func (*LearningRateConfig) XXX_OneofFuncs

func (*LearningRateConfig) XXX_OneofFuncs() (func(msg proto1.Message, b *proto1.Buffer) error, func(msg proto1.Message, tag, wire int, b *proto1.Buffer) (bool, error), func(msg proto1.Message) (n int), []interface{})

XXX_OneofFuncs is for the internal use of the proto package.

type LearningRateConfig_Dropout

type LearningRateConfig_Dropout struct {
	Dropout *LearningRateDropoutDrivenConfig `protobuf:"bytes,2,opt,name=dropout,oneof"`
}

type LearningRateConfig_Fixed

type LearningRateConfig_Fixed struct {
	Fixed *LearningRateFixedConfig `protobuf:"bytes,1,opt,name=fixed,oneof"`
}

type LearningRateConfig_LineSearch

type LearningRateConfig_LineSearch struct {
	LineSearch *LearningRateLineSearchConfig `protobuf:"bytes,3,opt,name=line_search,json=lineSearch,oneof"`
}

type LearningRateDropoutDrivenConfig

type LearningRateDropoutDrivenConfig struct {
	// Probability of dropping each tree in an existing so far ensemble.
	DropoutProbability float32 `protobuf:"fixed32,1,opt,name=dropout_probability,json=dropoutProbability" json:"dropout_probability,omitempty"`
	// When trees are built after dropout happen, they don't "advance" to the
	// optimal solution, they just rearrange the path. However you can still
	// choose to skip dropout periodically, to allow a new tree that "advances"
	// to be added.
	// For example, if running for 200 steps with probability of dropout 1/100,
	// you would expect the dropout to start happening for sure for all iterations
	// after 100. However you can add probability_of_skipping_dropout of 0.1, this
	// way iterations 100-200 will include approx 90 iterations of dropout and 10
	// iterations of normal steps.Set it to 0 if you want just keep building
	// the refinement trees after dropout kicks in.
	ProbabilityOfSkippingDropout float32 `` /* 144-byte string literal not displayed */
	// Between 0 and 1.
	LearningRate float32 `protobuf:"fixed32,3,opt,name=learning_rate,json=learningRate" json:"learning_rate,omitempty"`
}

func (*LearningRateDropoutDrivenConfig) Descriptor

func (*LearningRateDropoutDrivenConfig) Descriptor() ([]byte, []int)

func (*LearningRateDropoutDrivenConfig) GetDropoutProbability

func (m *LearningRateDropoutDrivenConfig) GetDropoutProbability() float32

func (*LearningRateDropoutDrivenConfig) GetLearningRate

func (m *LearningRateDropoutDrivenConfig) GetLearningRate() float32

func (*LearningRateDropoutDrivenConfig) GetProbabilityOfSkippingDropout

func (m *LearningRateDropoutDrivenConfig) GetProbabilityOfSkippingDropout() float32

func (*LearningRateDropoutDrivenConfig) ProtoMessage

func (*LearningRateDropoutDrivenConfig) ProtoMessage()

func (*LearningRateDropoutDrivenConfig) Reset

func (*LearningRateDropoutDrivenConfig) String

type LearningRateFixedConfig

type LearningRateFixedConfig struct {
	LearningRate float32 `protobuf:"fixed32,1,opt,name=learning_rate,json=learningRate" json:"learning_rate,omitempty"`
}

Config for a fixed learning rate.

func (*LearningRateFixedConfig) Descriptor

func (*LearningRateFixedConfig) Descriptor() ([]byte, []int)

func (*LearningRateFixedConfig) GetLearningRate

func (m *LearningRateFixedConfig) GetLearningRate() float32

func (*LearningRateFixedConfig) ProtoMessage

func (*LearningRateFixedConfig) ProtoMessage()

func (*LearningRateFixedConfig) Reset

func (m *LearningRateFixedConfig) Reset()

func (*LearningRateFixedConfig) String

func (m *LearningRateFixedConfig) String() string

type LearningRateLineSearchConfig

type LearningRateLineSearchConfig struct {
	// Max learning rate. Must be strictly positive.
	MaxLearningRate float32 `protobuf:"fixed32,1,opt,name=max_learning_rate,json=maxLearningRate" json:"max_learning_rate,omitempty"`
	// Number of learning rate values to consider between [0, max_learning_rate).
	NumSteps int32 `protobuf:"varint,2,opt,name=num_steps,json=numSteps" json:"num_steps,omitempty"`
}

Config for a tuned learning rate.

func (*LearningRateLineSearchConfig) Descriptor

func (*LearningRateLineSearchConfig) Descriptor() ([]byte, []int)

func (*LearningRateLineSearchConfig) GetMaxLearningRate

func (m *LearningRateLineSearchConfig) GetMaxLearningRate() float32

func (*LearningRateLineSearchConfig) GetNumSteps

func (m *LearningRateLineSearchConfig) GetNumSteps() int32

func (*LearningRateLineSearchConfig) ProtoMessage

func (*LearningRateLineSearchConfig) ProtoMessage()

func (*LearningRateLineSearchConfig) Reset

func (m *LearningRateLineSearchConfig) Reset()

func (*LearningRateLineSearchConfig) String

type QuantileConfig

type QuantileConfig struct {
	// Maximum eps error when computing quantile summaries.
	Eps float64 `protobuf:"fixed64,1,opt,name=eps" json:"eps,omitempty"`
	// Number of quantiles to generate.
	NumQuantiles int64 `protobuf:"varint,2,opt,name=num_quantiles,json=numQuantiles" json:"num_quantiles,omitempty"`
}

func (*QuantileConfig) Descriptor

func (*QuantileConfig) Descriptor() ([]byte, []int)

func (*QuantileConfig) GetEps

func (m *QuantileConfig) GetEps() float64

func (*QuantileConfig) GetNumQuantiles

func (m *QuantileConfig) GetNumQuantiles() int64

func (*QuantileConfig) ProtoMessage

func (*QuantileConfig) ProtoMessage()

func (*QuantileConfig) Reset

func (m *QuantileConfig) Reset()

func (*QuantileConfig) String

func (m *QuantileConfig) String() string

type QuantileEntry

type QuantileEntry struct {
	// Value for the entry.
	Value float32 `protobuf:"fixed32,1,opt,name=value" json:"value,omitempty"`
	// Weight for the entry.
	Weight float32 `protobuf:"fixed32,2,opt,name=weight" json:"weight,omitempty"`
	// We need the minimum and maximum rank possible for this entry.
	// Rank is 0.0 for the absolute minimum and sum of the weights for the maximum
	// value in the input.
	MinRank float32 `protobuf:"fixed32,3,opt,name=min_rank,json=minRank" json:"min_rank,omitempty"`
	MaxRank float32 `protobuf:"fixed32,4,opt,name=max_rank,json=maxRank" json:"max_rank,omitempty"`
}

func (*QuantileEntry) Descriptor

func (*QuantileEntry) Descriptor() ([]byte, []int)

func (*QuantileEntry) GetMaxRank

func (m *QuantileEntry) GetMaxRank() float32

func (*QuantileEntry) GetMinRank

func (m *QuantileEntry) GetMinRank() float32

func (*QuantileEntry) GetValue

func (m *QuantileEntry) GetValue() float32

func (*QuantileEntry) GetWeight

func (m *QuantileEntry) GetWeight() float32

func (*QuantileEntry) ProtoMessage

func (*QuantileEntry) ProtoMessage()

func (*QuantileEntry) Reset

func (m *QuantileEntry) Reset()

func (*QuantileEntry) String

func (m *QuantileEntry) String() string

type QuantileStreamState

type QuantileStreamState struct {
	Summaries []*QuantileSummaryState `protobuf:"bytes,1,rep,name=summaries" json:"summaries,omitempty"`
}

func (*QuantileStreamState) Descriptor

func (*QuantileStreamState) Descriptor() ([]byte, []int)

func (*QuantileStreamState) GetSummaries

func (m *QuantileStreamState) GetSummaries() []*QuantileSummaryState

func (*QuantileStreamState) ProtoMessage

func (*QuantileStreamState) ProtoMessage()

func (*QuantileStreamState) Reset

func (m *QuantileStreamState) Reset()

func (*QuantileStreamState) String

func (m *QuantileStreamState) String() string

type QuantileSummaryState

type QuantileSummaryState struct {
	Entries []*QuantileEntry `protobuf:"bytes,1,rep,name=entries" json:"entries,omitempty"`
}

func (*QuantileSummaryState) Descriptor

func (*QuantileSummaryState) Descriptor() ([]byte, []int)

func (*QuantileSummaryState) GetEntries

func (m *QuantileSummaryState) GetEntries() []*QuantileEntry

func (*QuantileSummaryState) ProtoMessage

func (*QuantileSummaryState) ProtoMessage()

func (*QuantileSummaryState) Reset

func (m *QuantileSummaryState) Reset()

func (*QuantileSummaryState) String

func (m *QuantileSummaryState) String() string

type SparseFloatBinarySplitDefaultLeft

type SparseFloatBinarySplitDefaultLeft struct {
	Split *DenseFloatBinarySplit `protobuf:"bytes,1,opt,name=split" json:"split,omitempty"`
}

Split rule for sparse float features defaulting left for missing features.

func (*SparseFloatBinarySplitDefaultLeft) Descriptor

func (*SparseFloatBinarySplitDefaultLeft) Descriptor() ([]byte, []int)

func (*SparseFloatBinarySplitDefaultLeft) GetSplit

func (*SparseFloatBinarySplitDefaultLeft) ProtoMessage

func (*SparseFloatBinarySplitDefaultLeft) ProtoMessage()

func (*SparseFloatBinarySplitDefaultLeft) Reset

func (*SparseFloatBinarySplitDefaultLeft) String

type SparseFloatBinarySplitDefaultRight

type SparseFloatBinarySplitDefaultRight struct {
	Split *DenseFloatBinarySplit `protobuf:"bytes,1,opt,name=split" json:"split,omitempty"`
}

Split rule for sparse float features defaulting right for missing features.

func (*SparseFloatBinarySplitDefaultRight) Descriptor

func (*SparseFloatBinarySplitDefaultRight) Descriptor() ([]byte, []int)

func (*SparseFloatBinarySplitDefaultRight) GetSplit

func (*SparseFloatBinarySplitDefaultRight) ProtoMessage

func (*SparseFloatBinarySplitDefaultRight) ProtoMessage()

func (*SparseFloatBinarySplitDefaultRight) Reset

func (*SparseFloatBinarySplitDefaultRight) String

type SparseVector

type SparseVector struct {
	Index []int32   `protobuf:"varint,1,rep,packed,name=index" json:"index,omitempty"`
	Value []float32 `protobuf:"fixed32,2,rep,packed,name=value" json:"value,omitempty"`
}

func (*SparseVector) Descriptor

func (*SparseVector) Descriptor() ([]byte, []int)

func (*SparseVector) GetIndex

func (m *SparseVector) GetIndex() []int32

func (*SparseVector) GetValue

func (m *SparseVector) GetValue() []float32

func (*SparseVector) ProtoMessage

func (*SparseVector) ProtoMessage()

func (*SparseVector) Reset

func (m *SparseVector) Reset()

func (*SparseVector) String

func (m *SparseVector) String() string

type TreeConstraintsConfig

type TreeConstraintsConfig struct {
	// Maximum depth of the trees.
	MaxTreeDepth uint32 `protobuf:"varint,1,opt,name=max_tree_depth,json=maxTreeDepth" json:"max_tree_depth,omitempty"`
	// Min hessian weight per node.
	MinNodeWeight float32 `protobuf:"fixed32,2,opt,name=min_node_weight,json=minNodeWeight" json:"min_node_weight,omitempty"`
}

Tree constraints config.

func (*TreeConstraintsConfig) Descriptor

func (*TreeConstraintsConfig) Descriptor() ([]byte, []int)

func (*TreeConstraintsConfig) GetMaxTreeDepth

func (m *TreeConstraintsConfig) GetMaxTreeDepth() uint32

func (*TreeConstraintsConfig) GetMinNodeWeight

func (m *TreeConstraintsConfig) GetMinNodeWeight() float32

func (*TreeConstraintsConfig) ProtoMessage

func (*TreeConstraintsConfig) ProtoMessage()

func (*TreeConstraintsConfig) Reset

func (m *TreeConstraintsConfig) Reset()

func (*TreeConstraintsConfig) String

func (m *TreeConstraintsConfig) String() string

type TreeNode

type TreeNode struct {
	// Types that are valid to be assigned to Node:
	//	*TreeNode_Leaf
	//	*TreeNode_DenseFloatBinarySplit
	//	*TreeNode_SparseFloatBinarySplitDefaultLeft
	//	*TreeNode_SparseFloatBinarySplitDefaultRight
	//	*TreeNode_CategoricalIdBinarySplit
	//	*TreeNode_CategoricalIdSetMembershipBinarySplit
	Node         isTreeNode_Node   `protobuf_oneof:"node"`
	NodeMetadata *TreeNodeMetadata `protobuf:"bytes,777,opt,name=node_metadata,json=nodeMetadata" json:"node_metadata,omitempty"`
}

TreeNode describes a node in a tree.

func (*TreeNode) Descriptor

func (*TreeNode) Descriptor() ([]byte, []int)

func (*TreeNode) GetCategoricalIdBinarySplit

func (m *TreeNode) GetCategoricalIdBinarySplit() *CategoricalIdBinarySplit

func (*TreeNode) GetCategoricalIdSetMembershipBinarySplit

func (m *TreeNode) GetCategoricalIdSetMembershipBinarySplit() *CategoricalIdSetMembershipBinarySplit

func (*TreeNode) GetDenseFloatBinarySplit

func (m *TreeNode) GetDenseFloatBinarySplit() *DenseFloatBinarySplit

func (*TreeNode) GetLeaf

func (m *TreeNode) GetLeaf() *Leaf

func (*TreeNode) GetNode

func (m *TreeNode) GetNode() isTreeNode_Node

func (*TreeNode) GetNodeMetadata

func (m *TreeNode) GetNodeMetadata() *TreeNodeMetadata

func (*TreeNode) GetSparseFloatBinarySplitDefaultLeft

func (m *TreeNode) GetSparseFloatBinarySplitDefaultLeft() *SparseFloatBinarySplitDefaultLeft

func (*TreeNode) GetSparseFloatBinarySplitDefaultRight

func (m *TreeNode) GetSparseFloatBinarySplitDefaultRight() *SparseFloatBinarySplitDefaultRight

func (*TreeNode) ProtoMessage

func (*TreeNode) ProtoMessage()

func (*TreeNode) Reset

func (m *TreeNode) Reset()

func (*TreeNode) String

func (m *TreeNode) String() string

func (*TreeNode) XXX_OneofFuncs

func (*TreeNode) XXX_OneofFuncs() (func(msg proto1.Message, b *proto1.Buffer) error, func(msg proto1.Message, tag, wire int, b *proto1.Buffer) (bool, error), func(msg proto1.Message) (n int), []interface{})

XXX_OneofFuncs is for the internal use of the proto package.

type TreeNodeMetadata

type TreeNodeMetadata struct {
	// The gain associated with this node.
	Gain float32 `protobuf:"fixed32,1,opt,name=gain" json:"gain,omitempty"`
	// The original leaf node before this node was split.
	OriginalLeaf *Leaf `protobuf:"bytes,2,opt,name=original_leaf,json=originalLeaf" json:"original_leaf,omitempty"`
}

TreeNodeMetadata encodes metadata associated with each node in a tree.

func (*TreeNodeMetadata) Descriptor

func (*TreeNodeMetadata) Descriptor() ([]byte, []int)

func (*TreeNodeMetadata) GetGain

func (m *TreeNodeMetadata) GetGain() float32

func (*TreeNodeMetadata) GetOriginalLeaf

func (m *TreeNodeMetadata) GetOriginalLeaf() *Leaf

func (*TreeNodeMetadata) ProtoMessage

func (*TreeNodeMetadata) ProtoMessage()

func (*TreeNodeMetadata) Reset

func (m *TreeNodeMetadata) Reset()

func (*TreeNodeMetadata) String

func (m *TreeNodeMetadata) String() string

type TreeNode_CategoricalIdBinarySplit

type TreeNode_CategoricalIdBinarySplit struct {
	CategoricalIdBinarySplit *CategoricalIdBinarySplit `protobuf:"bytes,5,opt,name=categorical_id_binary_split,json=categoricalIdBinarySplit,oneof"`
}

type TreeNode_CategoricalIdSetMembershipBinarySplit

type TreeNode_CategoricalIdSetMembershipBinarySplit struct {
	CategoricalIdSetMembershipBinarySplit *CategoricalIdSetMembershipBinarySplit `protobuf:"bytes,6,opt,name=categorical_id_set_membership_binary_split,json=categoricalIdSetMembershipBinarySplit,oneof"`
}

type TreeNode_DenseFloatBinarySplit

type TreeNode_DenseFloatBinarySplit struct {
	DenseFloatBinarySplit *DenseFloatBinarySplit `protobuf:"bytes,2,opt,name=dense_float_binary_split,json=denseFloatBinarySplit,oneof"`
}

type TreeNode_Leaf

type TreeNode_Leaf struct {
	Leaf *Leaf `protobuf:"bytes,1,opt,name=leaf,oneof"`
}

type TreeNode_SparseFloatBinarySplitDefaultLeft

type TreeNode_SparseFloatBinarySplitDefaultLeft struct {
	SparseFloatBinarySplitDefaultLeft *SparseFloatBinarySplitDefaultLeft `protobuf:"bytes,3,opt,name=sparse_float_binary_split_default_left,json=sparseFloatBinarySplitDefaultLeft,oneof"`
}

type TreeNode_SparseFloatBinarySplitDefaultRight

type TreeNode_SparseFloatBinarySplitDefaultRight struct {
	SparseFloatBinarySplitDefaultRight *SparseFloatBinarySplitDefaultRight `protobuf:"bytes,4,opt,name=sparse_float_binary_split_default_right,json=sparseFloatBinarySplitDefaultRight,oneof"`
}

type TreeRegularizationConfig

type TreeRegularizationConfig struct {
	// Classic L1/L2.
	L1 float32 `protobuf:"fixed32,1,opt,name=l1" json:"l1,omitempty"`
	L2 float32 `protobuf:"fixed32,2,opt,name=l2" json:"l2,omitempty"`
	// Tree complexity penalizes overall model complexity effectively
	// limiting how deep the tree can grow in regions with small gain.
	TreeComplexity float32 `protobuf:"fixed32,3,opt,name=tree_complexity,json=treeComplexity" json:"tree_complexity,omitempty"`
}

Tree regularization config.

func (*TreeRegularizationConfig) Descriptor

func (*TreeRegularizationConfig) Descriptor() ([]byte, []int)

func (*TreeRegularizationConfig) GetL1

func (m *TreeRegularizationConfig) GetL1() float32

func (*TreeRegularizationConfig) GetL2

func (m *TreeRegularizationConfig) GetL2() float32

func (*TreeRegularizationConfig) GetTreeComplexity

func (m *TreeRegularizationConfig) GetTreeComplexity() float32

func (*TreeRegularizationConfig) ProtoMessage

func (*TreeRegularizationConfig) ProtoMessage()

func (*TreeRegularizationConfig) Reset

func (m *TreeRegularizationConfig) Reset()

func (*TreeRegularizationConfig) String

func (m *TreeRegularizationConfig) String() string

type Vector

type Vector struct {
	Value []float32 `protobuf:"fixed32,1,rep,packed,name=value" json:"value,omitempty"`
}

func (*Vector) Descriptor

func (*Vector) Descriptor() ([]byte, []int)

func (*Vector) GetValue

func (m *Vector) GetValue() []float32

func (*Vector) ProtoMessage

func (*Vector) ProtoMessage()

func (*Vector) Reset

func (m *Vector) Reset()

func (*Vector) String

func (m *Vector) String() string

Jump to

Keyboard shortcuts

? : This menu
/ : Search site
f or F : Jump to
y or Y : Canonical URL